The outbreak of COVID-19 has had a huge impact on human life. The World Bank group (WBG) has stated that 2020 is the worst year since World War II for economic growth. An epidemic of an infectious disease such as COVID-19 is classified as a "social disaster" by law. The social disaster caused by COVID-19 puts certain industries, occupations and vulnerable groups at risk of exclusion and isolation. This paper intends to examine the fluctuations in the consumer price index in the cultural, sports and tourism sector before and after the onset of COVID-19. In addition, it predicts the consumer price index by sector until December 2021 and reveals its implications.
The event of change in KOSPI 200 Index composition is one of the main subjects for the test of EMH. According to EMH, when a certain event is not related with firm's fundamental value, stock price should not change after the announcement of news. This hypothesis leads us to the conclusion of horizontal demand curve of stock. This logic was questioned by Shleifer(1986) and argued that downward sloping demand curve hypothesis was supported. But Harris and Gruel(1986) found a different empirical evidence that price reversal occurs in the long run, which is called price pressure hypothesis. They argued that short term price effect by large block trading (price pressure) is offset in the long run because these event is unrelated to fundamental value. Therefor, they argued that EMH can not be rejected in the long run. Until now, there are two empirical studies with Korean market data in this area. Using a data with same time period of $1996{\sim}1999$, Kweon and Park(2000) and Ahn and Park(2005) showed that stock price or beta is not significantly affected by change in index composition. This study retested this event expanding sample period from 1996 to 2006, and analyzed why this event was considered an uninformative events in the preceding studies. We analyzed a market impact by separating samples according to firm size and market condition. In case of newly enlisted firm, we found the evidence supporting price pressure hypothesis on average. However, we found the long run price effect in the sample of large firms under bearish markets. At the same time, we know that the number of samples under the category of large firms under bearish markets is relatively small, which drives the same result of supporting the hypothesis that change in index composition is a non-informative event on average. Also, the long run price effect of large size firms under bearish markets was supported by the analyses using trading volumes. On the other hand, in case of delisting from the index, we found the long run price effect but that was not supported by trading volume analyses.
Purpose - This research examines the short-run and long-run effect of external shocks (oil price and exchange rate) on domestic food price in Indonesia. Research design, data, and methodology - Three variables are used in this research. The variables are food price index, Rupiah's exchange rate of Indonesia, and crude oil price from 1998 until 2015 using Vector Error Correction Model (VECM). Results - The increasing of oil price and the depreciation of Rupiah's rate push the domestic food price in long-run, but do not impact significantly in short- term. The response of food price to oil prices shock and exchange rate shock are positive and persistent throughout the entire sample period. The exchange rate and oil price shocks have a small proportion explaining for the fluctuations of food price index but increasing over time. Conclusions - The policymaker should concern on solving the problem of oil price increase and depreciation of exchange rate on Indonesia's food price as they are important factors that can affect the price stability. The government should not rely on food imports because the price is strongly influenced by the movements in the exchange rate.
This paper investigates the existence of a long-run relationship between world oil price and consumer price index for Korea during 1983~1999. The cointegration and error correction modelling approaches have been applied. Empirical results suggest that there exists a long-run relationship among world oil prices. consumer prices, M2 and a production gap variable. The dynamic behavior of the relationship has been investigated by estimating a error correction model, in which the error correction term have been found significant. The error correction model has also been found to be robust as it satisfy almost all relevant diagnostic tests.
Purpose - Our previous study (Chang & Lee, 2023) presented observations on the recent changes in the year-on-year (YoY) Consumer Price Index (CPI) of the Republic of Korea (ROK) after the COVID-19 pandemic. The purpose of this article is to present an integrated analysis and interpretation of the recent changes in CPI and the Aggregate Import Price Index (IPI) by incorporating recent data, specifically data from September 2022 to December 2022. Design/methodology/approach - This study collected CPI (YoY) data in the ROK from January 2019 to December 2022 using e-National Indicator System provided by the ROK. Statistical analysis was employed to analyze the data. Findings - First, we confirm the extended results of the existing study by Chang and Lee (2023). Second, we demonstrate that the Aggregate IPI in ROK increased significantly in 2022 compared to 2021. We then provide an integrated interpretation on the significant increase in CPI and aggregate IPI in ROK, which complements Chang and Lee (2023) that limits their discussion to YoY CPI. Moreover, we show that the IPI of the semiconductor in ROK decreased significantly in 2022 compared to 2021. Research implications or Originality - Our results provide important insights into the recent changes in the CPI in the ROK. The results suggest that these changes can be partially attributed to various factors, such as the global supply chain disruptions resulting from the spread of the COVID-19 pandemic and the prolonged war between Russia and Ukraine, the side effect of quantitative easing by the US Federal Reserve, heat waves and droughts caused by climate change in ROK, a surge in demand following a gradual daily recovery, US-China trade conflict, etc. Our study shows statistically comprehensive results compared to the studies that limit their discussion to YoY average growth rate.
KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.
This study aims to empirically identify the effect of spatial accessibility, based on travel, on housing prices in the Korean capital region. More specifically, it has two research purposes: First, investigating the effect of comprehensive spatial accessibility, based on road network and actual trips from origin to destination, on average apartment price (Korean Won per square meter) at the level of Eup, Myeon and Dong; Second, identifying better accessibility index between Hansen's and Kalogirou and Foley's ones. The former represents a road-based travel time decay function with destination trips, while the latter is a function with origin trips as well as destination ones. The study employs spatial economic models considering spatial auto-correlative relationship as an appropriate methodology with such control independent indicators as population density, road density, educational environment and distances from CBDs. Analysis results demonstrate that spatial accessibility, based on road network and actual trips from origin to destination, has a statistically significant impacts on housing price in the region. Our empirical evidence proves that the Hansen index is more appropriate than the other in estimating housing price impacts.
The Journal of Asian Finance, Economics and Business
/
v.7
no.1
/
pp.29-36
/
2020
Stock price multiple is one of the most well-known equity valuation technique used to forecast equity price. It measures by multiplying "the ratio of stock price to a value driver" by a value driver. The value driver can be earning per share (EPS), sales or other financial measurements. The objective of price multiple technique is to evaluate the value of assets and compare how similar assets are priced in the market. Although stock price multiple technique is common in financial filed, studies on the application of the technique in Thailand is still limited. The present study is conducted to serve three major objectives. The first objective is to apply the technique to measure value of firms in banking sector in the Stock Exchange of Thailand. The second objective is to develop composite price multiple index to forecast equity prices. The third objective is to compare valuation accuracy of different value drivers of price multiple (i.e. EPS, Earnings Growth, Earnings Before Interest Taxes Depreciation and Amortization, Sales, Book Value and Composite Index) in forecasting equity prices. Results indicated that EPS is the most accurate value drivers of price multiple used to forecast equity price of firms in baking sector.
Purpose - The purpose of this paper is to compare and review behavioral economics models that explain stock price changes after large-scale price shocks in the Korean stock market and to find a suitable model. In this paper, among the theories reviewed, it was confirmed that the anchoring heuristics theory has high explanatory power for stock prices after large-scale stock price fluctuations. Design/methodology/approach - This paper conducts an event study on stock price shocks in which the individual stocks that make up the KOSPI200 index show more than 10% fluctuation on a daily basis. In order to materialize the abstract predictions of heuristics theories in a varifiable form, this paper uses the daily stock price index change as a reference point for availability heuristics, and uses the 52-week highest and lowest price as reference point for anchoring heuristics. Research implications or Originality - As a result of the empirical analysis, the stock price reversals did not consistently appear for changes in the daily index. On the other hand, the stock price drifts consistently appeared around the 52-week highest and the 52-week lowest price. And in the multiple regression analysis that controlled for company-specific and event-specific variables, the results that supported the anchoring heuristics were more evident. These results suggest that it is possible to establish an investment strategy using large-scale price change in Korean stock market.
Proceeding of Spring/Autumn Annual Conference of KHA
/
2011.04a
/
pp.285-289
/
2011
he purpose of this study is to assess the effects of real estate policy on apartment price index in Seoul. To meet the research goal, this research reviewed real estate policy of the government from January of 1986 to August of 2010, and then it collected monthly apartment price index in 25 local districts of Seoul from January of 2003 to August of 2010. After 25 districts were grouped into 2 areas (14 districts in Gangnam and 11 districts in Gangbuk), the data of two areas were analyzed by using the SAS program, Cluster analysis with Ward method showed 3 clusters on each area, and with 6 clusters in total, the effects of real estate policy in the period were examined by using residual analysis. The analysis indicated two major shocks (one was from May to October of 2003, and the other was from March of 2006 to January of 2007), and the results showed that the intervention of government in the market had the asymmetric effects in bullish and bearish times. It implies that the market volatility is substantially influenced by irrational sentiments. Thus, it's suggested to devise the consumer sentiment index suitable in real estate market.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.