• Title/Summary/Keyword: Prey species

Search Result 218, Processing Time 0.026 seconds

Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area

  • Chang, Kwang-Hyeon;Doi, Hideyuki;Nishibe, Yuichiro;Nam, Gui-Sook;Nakano, Shin-Ichi
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • Feeding behavior of Temora turbinata was investigated through laboratory experiments with special emphasis on its food preference and consequent clearance rate on diatom and microbial components given as common natural food assemblage of coastal area (Uchiumi, Uwa Sea, Japan). Among available prey items, T. turbinata showed the highest clearance rate for Thalassiosira spp. ($0.23{\pm}0.08L\;Temora^{-1}day^{-1}$) followed by Chaetoceros spp. ($0.11{\pm}0.03L\;Temora^{-1}day^{-1}$), but clearance rates for other diatom, Nitzschia spp. was lower (0.03 to $0.07L\;Temora^{-1}day^{-1}$). Bacterial abundances showed no response against 24-h feeding of T. turbinata. Feeding of T. turbinata on heterotrophic nanoflagellates (HNF) was apparent when clearance rates of T. turbinata on diatoms were relatively low, but T. turbinata did not consume HNF as well as ciliates with Thalassiosira spp. of which clearance rate was highest. The results suggest that HNF and ciliates are possible supplementary prey item for T. turbinata, but their contribution as food sources can be limited by the presence of other prey items such as preferable diatom species.

Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production

  • Lim, An Suk;Jeong, Hae Jin;You, Ji Hyun;Park, Sang Ah
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.277-292
    • /
    • 2020
  • Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids beneficial to human health. A limited number of microalgae have been used for commercial omega-3 production, which necessitates the identification of new microalgae with high omega-3 contents. We explored the fatty acid composition and EPA and DHA contents of the mixotrophic dinoflagellate Gymnodinium smaydae fed with the optimal algal prey species Heterocapsa rotundata. Cells of G. smaydae were found to be rich in omega-3 fatty acids. In particular, the DHA content of G. smaydae was 21 mg g-1 dry weight, accounting for 43% of the total fatty acid content. The percentage of DHA in the total fatty acid content of G. smaydae was the highest among the reported microalgae except for Crypthecodinium cohnii. Moreover, to determine if the prey supply interval affected the growth rate of G. smaydae and its fatty acid content, three different prey supply intervals (daily, once every 2 d, and once for 4 d) were tested. Daily prey supply yielded the highest total fatty acid and DHA contents in G. smaydae. Furthermore, we successfully produced high-density G. smaydae cultures semi-continuously for 43 d with daily prey supply. During the semi-continuous cultivation period, the highest density of G. smaydae was 57,000 cells mL-1, with an average growth rate of 0.7 d-1. Taken together, the percentage of EPA and DHA in the total fatty acid content was maintained in the range of 54.2-56.9%. The results of this study support G. smaydae as a promising microalgal candidate for commercial DHA production and demonstrate that daily supply of prey can efficiently produce high-density G. smaydae cultures for more than a month.

Experimental Study on Effect on Prey Survival by Juvenile Fish Shelter (JFS) under Pressure by Piscivorous Fishes (포식압력 하에 치어 보호 구조물이 피식자의 생존율에 미치는 영향에 관한 실험적 연구)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Lee, Saeromi;Ahn, Hosang;Park, Jae-Roh;Song, Ho Myeon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.746-753
    • /
    • 2013
  • The aim of this study was to evaluate artificial fish shelter, which was known to increase prey survival and expand habitat space to improve species diversity and fish communities in a freshwater ecosystem. The experiment was performed at an outdoor test-bed for three months from 2011 by comparing the responses to adjustments in the volume of the artificial patch (juvenile fish shelter, JFS) in the control and experimental groups. Analysis of the environmental conditions over two periods (Period1 ~ 2) showed minor differences in the physichemical characteristics of water quality, phytoplankton, and zooplankton biomass, thus, allowing comparative analysis of feeding ecology. However, high water temperature conditions in Period1 ($25.6{\pm}2.0^{\circ}C$), affected the predation activity of the piscivorous fishes, Coreoperca herzi (C. herzi, size $89{\pm}4mm$). Survival rates of the prey fishes, Rhynchocypris oxycephalus (R. oxycephalus, size $29{\pm}1mm$), improved as the patch volume increased and were higher than those of the control group by 35.9 ~ 46.7%. Analysis showed that JFS reduced the chances of predator-prey encounter, and thereby minimized prey vulnerability.

Application of DNA Analysis for Identification of Prey Items on Zooplankton: Selective Treatment Method (기수역 요각류 위내용물 유전자 분석: 소화기관 내외부 유전자의 선택적 처리방법)

  • Chae, Yeon-Ji;Oh, Hye-Ji;Kim, Yong-Jae;Chang, Kwang-Hyeon;Jo, Hyunbin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.247-256
    • /
    • 2021
  • Understanding the selective feeding behavior of zooplankton on phytoplankton is essential for evaluating the nutrient cycle and energy flow in the food web. Although many studies have been conducted regarding the feeding behaviors of zooplankton through gut content analyses, there are limitations in the visual identification of digested contents using a microscope. DNA techniques have been applied to overcome these limitations since they can detect and amplify small amounts of prey DNA remaining in the gut contents. We designed a method to extract prey DNA from the gut contents of the whole body of the copepod specimen and tested the resolution of DNA identification for the prey phytoplankton. The common brackish species, Sinocalanus tenellus, were collected from Saemangeum Reservoir in different sites and seasons, and gut content DNA was extracted using 2.5% bleach treatment for 2 min for removal of potential contamination sources existing in preserved specimens without dissolution of the body. The sequences of the extracted gut contents were confirmed using BLASTn suite based on the NCBI database. The phytoplankton species detected in the gut showed temporal and spatial differences. Although DNA analysis of small copepod gut contents has been suggested as an effective method to examine the dynamics of primary prey sources at the genus or species level, uncertainties such as misidentification and limitations in the detailed information of the composition still exist.

The diet of three commercial fishes based on stomach contents in the Yellow Sea

  • Heeyong Kim;Wongyu Park;Jung Hwa Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.10
    • /
    • pp.628-636
    • /
    • 2023
  • Stomach contents of three commercially important species, anchovy (Engraulis japonica), small yellow croaker (Larimichthys polyactis) and yellow goosefish (Lophius litulon) were analyzed to investigate difference of prey between Spring and Fall. Trawl surveys for target fishes were conducted at 12 stations by the RV Tamgu-8 in the Yellow Sea-Korean side in Spring and Fall 2008 as a part of the United Nations Development Programme/Global Environment Facility (UNDP/GEF), Yellow Sea Large Marine Ecosystem (YSLME) survey. Stomach contents of 50 individuals of each species were analyzed to species level of prey, if the number of specimens was more than 50 for each species. Fullness and digestion condition of stomach contents were determined by five and six levels, respectively. In anchovy stomachs, 23 species in Spring and 15 species in Fall were identified, respectively. Stomach contents were mostly occupied by copepods and euphausiids, mostly Euphausia spp., calyptopis in Spring while by copepods and amphipods in Fall. In small yellow croaker stomachs, 23 species in Spring and 11 species in Fall were identified. Stomach contents were mostly occupied by copepods and euphausiids in Spring, but by only euphausiids in Fall. Total 368 yellow goosefish (151 in Spring and 217 in Fall) were captured, but stomach contents only in Fall were analyzed. Most of stomach contents were anchovy with small proportion of Hakodate sand shrimp, Tanaka's snailfish, Pacific cod, and miscellaneous things. The present research unveiled that main food items of plankton feeder were distinctly different by species and seasons in the Yellow Sea-Korean side, as coincided with previous reports.

Feeding Habits and Consumption by Finless Porpoises (Neophocaena asiaeorientalis) in the Yellow Sea (한국 서행 상괭이 (Neophocaena asiaeorientalis)의 먹이습성과 섭식량)

  • Park, Kyum-Joon;An, Yong-Rock;Lee, Young-Ran;Park, Ji-Eun;Moon, Dae-Yeon;Choi, Seok-Gwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • We investigated the stomach contents of finless porpoises collected in the Yellow Sea. Prey organisms in the stomachs of 109 finless porpoises were identified as 11 species of fish, 8 species of shrimp and 4 species of cephalopod. Index of Relative Importance analysis revealed that the porpoises fed mainly on the Japanese sand shrimp (Crangon affinis). The energy density of the prey was estimated to be 5.46 kJ. The daily energy requirement was estimated to be 18,051 kJ/day for a porpoise with an average weight of 32.49 kg. The estimated annual consumption by finless porpoises in the Yellow Sea was 25,454 tons. The average commercial catch in the Yellow Sea by Korean fisheries was 135,913 tons from 2005 to 2009. Assuming that the abundance of finless porpoises is stable, porpoises ate approximately 18.7% of the commercial catch. The fishery catch may be influenced by the consumption by finless porpoises, while fishery bycatch is a cause of porpoise mortality in the Yellow Sea.

EXISTENCE OF OPTIMAL SOLUTION AND OPTIMALITY CONDITION FOR PARAMETER IDENTIFICATION OF AN ECOLOGICAL SPECIES SYSTEM

  • LI CHUNFA;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.273-286
    • /
    • 2005
  • Parameter identification problem of a three species (predator, mutualist-prey, and mutualist) ecological system with reaction-diffusion phenomenon is investigated in this paper. The mathematical model of the parameter identification problem is constructed and continuous dependence of the solution for the direct problem on the parameters identified is obtained. Finally, the existence of optimal solution and an optimality necessary condition for the parameter identification problem are given.

Feeding Habits of the Jack Mackerel Trachurus japonicus in the Southern Sea of the Republic of Korea (한국 남해에서 출현한 전갱이(Trachurus japonicus)의 식성)

  • Lee, Ye Ji;Lee, Jeong Hoon;Lee, Young Hye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.64-72
    • /
    • 2021
  • The feeding habits of the Japanese jack mackerel Trachurus japonicus were studied in the Southern Sea of the Republic of Korea. To assess the effects of season, sampling was conducted in February (winter), May (spring), and August (summer), 2020. The total length of each fish was measured in 1 cm intervals. Diet composition showed the highest species diversity during winter. Diet composition changed from copepods to euphausiids as the total length of jack mackerel increased, except during winter. The most important seasonal prey were copepods in winter and summer and euphausiids in spring. Species diversity of the zooplankton community structure was highest in winter. Among the zooplankton communities, copepods were dominant in all seasons. Species with a high electivity index in all seasons were relatively large zooplankton of ≥2 mm. Jack mackerel had ontogenetic diet change, exhibited diet selectivity depending on size, and its feeding habits were affected by the zooplankton community structure.

Predation of the Japanese keelback (Hebius vibakari Boie, 1826) by the Slender racer (Orientocoluber spinalis Peters, 1866)

  • Park, Il-Kook;Park, Jaejin;Park, Jiho;Min, Seong-Hun;Grajal-Puche, Alejandro;Park, Daesik
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.170-173
    • /
    • 2021
  • Background: The Slender racer (Orientocoluber spinalis Peters, 1866) has recently been reclassified to the new genus Orientocoluber from Hierophis. Ecological knowledge of this species is limited due to its highly mobile behavior. On 17 July 2020, we captured a female O. spinalis on Oeyeon Island, Boryeong-si, Republic of Korea, and collected its feces for a diet analysis. We observed snake scales from the collected feces and subsequently determined the prey species through morphological and molecular methods. Results: We initially hypothesized that the extracted fecal sample scales belonged to H. vibakari, due to their thin keel and rhombus shape. We also amplified H. vibakari DNA from the extracted fecal sample using Illumina sequencing methods. Our morphological and molecular results suggest that O. spinalis predates H. vibakari on Oeyeon Island. Conclusion: This is the first report of O. spinalis predating another snake species, ophiophagy, and implies that H. vibakari may be a crucial prey item for O. spinalis on Oeyeon Island.

Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters

  • Lee, Sung Yeon;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Eom, Se Hee
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.37-50
    • /
    • 2021
  • Heterotrophic dinoflagellates Gyrodinium spp. are one of the major grazers of phytoplankton in many coastal waters. Gyrodinium dominans, G. jinhaense, and G. moestrupii have similar morphologies but different edible prey species. To explore the variations in the ecological niches of these three species, we investigated their spatial-temporal distributions in Korean waters. Because of the high similarity in morphology among these three Gyrodinium species, we used real-time polymerase chain reactions to quantify their abundance in water samples that were seasonally collected from 28 stations along the Korean Peninsula from April 2015 to October 2018. Cells of G. dominans were found at all sampling stations, G. jinhaense at 26 stations, and G. moestrupii at 22 stations, indicating that all three species were widely distributed in Korea. Furthermore, all three species displayed strong seasonal distributions. The largest numbers of the stations where G. dominans and G. jinhaense cells were present were found during the summer (26 and 23 stations, respectively), but that for G. moestrupii was found in the autumn (15 stations). The abundance of G. dominans was positively correlated with that of G. jinhaense, but not with that of G. moestrupii. The highest abundances of G. dominans (202.5 cells mL-1) and G. jinhaense (20.2 cells mL-1) were much greater than that of G. moestrupii (1.2 cells mL-1). The highest abundances of G. dominans and G. jinhaense were found in July, whereas that of G. moestrupii was found in March. The abundances of G. dominans and G. jinhaense, but not G. moestrupii, were positively correlated with water temperature. Therefore, the spatial-temporal distributions of G. dominans and G. jinhaense were closer than those of G. moestrupii and G. dominans or G. jinhaense. This differs from results based on the relative differences in ribosomal DNA sequences and the types of edible prey reported in the literature. Thus, the variations in spatial-temporal distributions and prey species of these three Gyrodinium species suggest that they may have different ecological niches in Korean coastal waters.