• Title/Summary/Keyword: Previous Algorithm

Search Result 3,144, Processing Time 0.03 seconds

Puzzle Rule Algorithm of Euler Square Game (오일러 방진 게임 퍼즐 규칙 알고리즘)

  • Lee, Sang-Un
    • Journal of Industrial Convergence
    • /
    • v.19 no.4
    • /
    • pp.23-28
    • /
    • 2021
  • This paper finds the regular pattern of n = [3, ∞] for Euler square game related with n = 6(6×6=36) thirty-six officer problem that is still unsolved problem. The solution of this problem is exists for n = [3, 10] without n = 6. Also, previous researchers finds the random assigned solution for specific number using computer programming. Therefore, the solution of n = [11, ∞] Euler squares are unsolved problem because of anything but easy. This paper attempts to find generalized patterns for domains that have been extended to n = [3, ∞], while existing studies have been limited to n = [3, 10]. This paper classify the n = [3, ∞] into n = odd, 4k even, 4k+2 even of three classes. Then we find the simple regular pattern solution for n = odd and 4k even(n/2 = even). But we can't find the regular pattern for 4k+2 even(n/2 = odd).

Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF (LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Among the learning methods for Continuous Learning environments, "Learning without Forgetting" has fixed regularization strengths, which can lead to poor performance in environments where various data are received. We suggest a way to set weights variable by identifying the features of the data we want to learn. We applied weights adaptively using correlation and complexity. Scenarios with various data are used for evaluation and experiments showed accuracy increases by up to 5% in the new task and up to 11% in the previous task. In addition, it was found that the adaptive weight value obtained by the algorithm proposed in this paper, approached the optimal weight value calculated manually by repeated experiments for each experimental scenario. The correlation coefficient value is 0.739, and overall average task accuracy increased. It can be seen that the method of this paper sets an appropriate lambda value every time a new task is learned, and derives the optimal result value in various scenarios.

Sentence Recommendation Using Beam Search in a Military Intelligent Image Analysis System (군사용 지능형 영상 판독 시스템에서의 빔서치를 활용한 문장 추천)

  • Na, Hyung-Sun;Jeon, Tae-Hyeon;Kang, Hyung-Seok;Ahn, Jinhyun;Im, Dong-Hyuk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.521-528
    • /
    • 2021
  • Existing image analysis systems in use in the military field are carried out by readers analyzing and identifying images themselves, writing and disseminating related content, and in this process, repetitive tasks are frequent, resulting in workload. In this paper, to solve the previous problem, we proposed an algorithm that can operate the Seq2Seq model on a word basis, which operates on a sentence basis, and applied the Attention technique to improve accuracy. In addition, by applying the Beam Search technique, we would like to recommend various current identification sentences based on the past identification contents of a specific area. It was confirmed through experiments that the Beam Search technique recommends sentences more effectively than the existing greedy Search technique, and confirmed that the accuracy of recommendation increases when the size of Beam is large.

Advanced LwF Model based on Knowledge Transfer in Continual Learning (지속적 학습 환경에서 지식전달에 기반한 LwF 개선모델)

  • Kang, Seok-Hoon;Park, Seong-Hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.347-354
    • /
    • 2022
  • To reduce forgetfulness in continuous learning, in this paper, we propose an improved LwF model based on the knowledge transfer method, and we show its effectiveness by experiment. In LwF, if the domain of the learned data is different or the complexity of the data is different, the previously learned results are inaccurate due to forgetting. In particular, when learning continues from complex data to simple data, the phenomenon tends to get worse. In this paper, to ensure that the previous learning results are sufficiently transferred to the LwF model, we apply the knowledge transfer method to LwF, and propose an algorithm for efficient use. As a result, the forgetting phenomenon was reduced by an average of 8% compared to the existing LwF results, and it was effective even when the learning task became long. In particular, when complex data was first learned, the efficiency was improved more than 30% compared to LwF.

Minimizing the Maximum Weighted Membership of Interval Cover of Points (점들의 구간 커버에 대한 최대 가중치 맴버쉽 최소화)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1531-1536
    • /
    • 2022
  • This paper considers a problem to find a set of intervals containing all the points for the given n points and m intervals on a line, This is a special case of the set cover problem, well known as an NP-hard problem. As optimization criteria of the problem, there are minimizing the number of intervals to cover the points, maximizing the number of points each of which is covered by exactly one interval, and so on. In this paper, the intervals have weights and the sum of weights of intervals to cover a point is defined as a membership of the point. We will study the problem to find an interval cover minimizing the maximum of memberships of points. Using the dynamic programming method, we provide an O(m2)-time algorithm to improve the time complexity O(nm log n) given in the previous work.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

The study on Lightness and Performance Improvement of Universal Code (BL-beta code) for Real-time Compressed Data Transferring in IoT Device (IoT 장비에 있어서 실시간 데이터 압축 전송을 위한 BL-beta 유니버설 코드의 경량화, 고속화 연구)

  • Jung-Hoon, Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.492-505
    • /
    • 2022
  • This study is a study on the results of improving the logic to effectively transmit and decode compressed data in real time by improving the encoding and decoding performance of BL-beta codes that can be used for lossless real-time transmission of IoT sensing data. The encoding process of BL-beta code includes log function, exponential function, division and square root operation, etc., which have relatively high computational burden. To improve them, using bit operation, binary number pattern analysis, and initial value setting of Newton-Raphson method using bit pattern, a new regularity that can quickly encode and decode data into BL-beta code was discovered, and by applying this, the encoding speed of the algorithm was improved by an average of 24.8% and the decoding speed by an average of 5.3% compared to previous study.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.

Implementation of a Travel Route Recommendation System Utilizing Daily Scheduling Templates

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.137-146
    • /
    • 2022
  • In relation to the travel itinerary recommendation service, which has recently become in high demand, our previous work introduces a method to quantify the popularity of places including tour spots, restaurants, and accommodations through social big data analysis, and to create a travel schedule based on the analysis results. On the other hand, the generated schedule was mainly composed of travel routes that connected tour spots with the shorted distance, and detailed schedule information including restaurants and accommodation information for each travel date was not provided. This paper presents an algorithm for constructing a detailed travel route using a scenario template in a travel schedule created based on social big data, and introduces a prototype system that implements it. The proposed system consists of modules such as place information collection, place-specific popularity score estimation, shortest travel rout generation, daily schedule organization, and UI visualization. Experiments conducted based on social reviews collected from 63,000 places in the Gyeongnam province proved effectiveness of the proposed system.