• Title/Summary/Keyword: Preventive Maintenance Model

Search Result 166, Processing Time 0.022 seconds

Development of a Simulation System for Reliability Centered Maintenance (신뢰성 기반 정비를 위한 시뮬레이션 시스템 개발)

  • Yun, Won-Young;Son, Sung-Min;Kim, Jong-Woon
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.521-527
    • /
    • 2000
  • A simulation model is developed for planning maintenance, and it can be used in the procedure of Reliability-Centered Maintenance. System availability and the total cost of system operation are predicted by discrete event simulation. These two kinds of output are useful to determine the interval of preventive maintenance. This paper describes simulation logic, and focuses on modeling the maintenance effects and the relations of maintenance works. An example is described for illustrating the simulation model.

  • PDF

Optimization of Cost and Downtime for Periodic PM Model Following the Expiration of Warranty

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.587-596
    • /
    • 2008
  • This paper develops the optimal periodic preventive maintenance policies following the expiration of warranty: renewing warranty and non-renewing warranty. After the warranty period is expired, the system undergoes the PM periodically and is minimally repaired at each failure between two successive PMs. Firstly, we determine the expected cost rate per unit time and the expected downtime per unit time for the periodic PM model. Then the overall value function suggested by Jiang and Ji(2002) is applied to obtain the optimal PM period and the optimal PM number. Finally, the numerical examples are presented for illustrative purpose.

  • PDF

Condition-Based Model for Preventive Maintenance of Armor Units of Rubble-Mound Breakwaters using Stochastic Process (추계학적 확률과정을 이용한 경사제 피복재의 예방적 유지관리를 위한 조건기반모형)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.191-201
    • /
    • 2016
  • A stochastic process has been used to develop a condition-based model for preventive maintenance of armor units of rubble-mound breakwaters that can make a decision the optimal interval at which some repair actions should be performed under the perfect maintenance. The proposed cost model in this paper based on renewal reward process can take account of the interest rate, also consider the unplanned maintenance cost which has been treated like a constant in the previous studies to be a time-dependent random variable. A function for the unplanned maintenance cost has been mathematically proposed so that the cumulative damage, serviceability limit and importance of structure can be taken into account, by which a age-based maintenance can be extended to a condition-based maintenance straightforwardly. The coefficients involved in the function can also be properly estimated using a method expressed in this paper. Two stochastic processes, Wiener process and gamma process have been applied to armor stones of rubble-mound breakwaters. By evaluating the expected total cost rate as a function of time for various serviceability limits, interest rates and importances of structure, the optimal period of preventive maintenance can easily determined through the minimization of the expected total cost rate. For a fixed serviceability limit, it shows that the optimal period has been delayed while the interest rate increases, so that the expected total cost rate has become lower. In addition, the gamma process tends to estimate the optimal period more conservatively than the Wiener process. Finally, it is found that the more crucial the level of importance of structure becomes, the more often preventive maintenances should be carried out.

A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement (최소수리 블록교체 모형을 활용한 상태기반 보전 정책 연구)

  • Lim, Jun Hyoung;Won, Dong-Yeon;Sim, Hyun Su;Park, Cheol Hong;Koh, Kwan-Ju;Kang, Jun-Gyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: This study proposes a process for evaluating the preventive maintenance policy for a system with degradation characteristics and for calculating the appropriate preventive maintenance cycle using time- and condition-based maintenance. Methods: First, the collected data is divided into the maintenance history lifetime and degradation lifetime, and analysis datasets are extracted through preprocessing. Particle filter algorithm is used to estimate the degradation lifetime from analysis datasets and prior information is obtained using LSE. The suitability and cost of the existing preventive maintenance policy are each evaluated based on the degradation lifetime and by using a minimum repair block replacement model of time-based maintenance. Results: The process is applied to the degradation of the reverse osmosis (RO) membrane in a seawater reverse osmosis (SWRO) plant to evaluate the existing preventive maintenance policy. Conclusion: This method can be used for facilities or systems that undergo degradation, which can be evaluated in terms of cost and time. The method is expected to be used in decision-making for devising the optimal preventive maintenance policy.

Fuzzy-based Decision Support Model for Determining Preventive Maintenance Works Order (퍼지 집합을 활용한 건물 사전 보수작업 대상 선정 지원모델)

  • Ko, Taewoo;Park, Moonseo;Lee, Hyun-Soo;Kim, Hyunsoo;Kim, Sooyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • Preventive maintenance of buildings has increased the importance of interest in that it is able to maintain the performance building has and to prevent a problem occurred in future. For improved preventive maintenance work, it should be performed to select works order clearly and preceded the accurate measurement for the state of works order. when measuring the conditions, measurement of the state of work order considering the various criteria is more effective than to measure by only criterion. But, there are something hard to evaluate exactly between the criteria because of decision-maker's subjective judgments. To solve these problems, this research proposes decision making support model to determine preventive maintenance works order using Fuzzy-sets. By using Fuzzy-sets when measuring state of work objects, it can be reduced vagueness of judgments by decision-makers. This model can be used as a tool for objective evaluation of preventive maintenance work orders and offer the guideline to perform decision-making.

Wear Limit of Tool by the Shift and Failure of a Machining Process (절삭공정의 변이와 고장에 의한 가공공구의 마모한계)

  • 이도경
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.9-16
    • /
    • 1995
  • The degeneration of tool in material removal processing machinery can be characterized by wear, deflection, chattering and any failure in tool or in the material In be processed. In the previous studies, first three of them are analyzed as a preventive maintenance strategy in quality control area. The last of them, any failure, is analyzed as a preventive maintenance strategy in reliability area. In this research, we propose a simple integrated mathematical model which minimizes the cost of machinery failures and producing defects. We determine the optimal wear limit of tool by considering the percent defects. cost, the preventive maintenance cost, and the corrective maintenance cost.

  • PDF

Determining an Optimal Production Time for EPQ Model with Preventive Maintenance and Defective Rate (생산설비의 유지보수서비스와 제품의 불량률을 고려한 최적 생산주기 연구)

  • Kim, Migyoung;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Purpose: The purpose of this paper is to determine an optimal production time for economic production quantity model with preventive maintenance and random defective rate as the function of a machinery deteriorates. Methods: If a machinery shifts from "in-control" state to "out-of-control" state, a proportion of defective items being produced increases. It is assumed that time to state shift is a random variable and follows an arbitrary distribution. The elapsed time until process shift decreases stochastically as a production cycle repeats and quasi-renewal process is used to implement for production facilities to deteriorate. Results: When the exponential parameter for exponential distribution increases, the optimal production time increases. When Weibull distribution is considered, the optimal production time is closely affected by the shape parameter of Weibull distribution. Conclusion: A mathematical model is suggested to find optimal production time and optimal number of production cycles and numerical examples are implemented to validate the patterns for changes of optimal times under different parameters assumptions. The real application is implemented using the proposed approach.

A Study on Determining the Optimal Replacement Interval of the Rolling Stock Signal System Component based on the Field Data (필드데이터에 의한 철도차량 신호장치 구성품의 최적 교체주기 결정에 관한 연구)

  • Byoung Noh Park;Kyeong Hwa Kim;Jaehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.104-111
    • /
    • 2023
  • Rolling stock maintenance, which focuses on preventive maintenance, is typically implemented considering the potential harm that may be inflicted to passengers in the event of failure. The cost of preventive maintenance throughout the life cycle of a rolling stock is 60%-75% of the initial purchase cost. Therefore, ensuring stability and reducing maintenance costs are essential in terms of economy. In particular, private railroad operators must reduce government support budget by effectively utilizing railroad resources and reducing maintenance costs. Accordingly, this study analyzes the reliability characteristics of components using field data. Moreover, it resolves the problem of determining an economical replacement interval considering the timing of scrapping railroad vehicles. The procedure for determining the optimal replacement interval involves five steps. According to the decision model, the optimal replacement interval for the onboard signal device components of the "A" line train is calculated using field data, such as failure data, preventive maintenance cost, and failure maintenance cost. The field data analysis indicates that the mileage meter is 9 years, which is less than the designed durability of 15 years. Furthermore, a life cycle in which the phase signal has few failures is found to be the same as the actual durability of 15 years.

An Introductory Study on Imperfect Maintenance Effect in Rolling Stocks

  • Kim, Jong-Woon;Han, Seok-Yun;Chung, Jong-Duk
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The maintenance effect is a peculiar factor applied to repairable systems such as rolling stocks. Conventional statistical analysis for failure times takes into account one of the two following extreme assumptions, namely, the state of the system after maintenance is either as "good as new" (GAN, perfect maintenance model) or as "bad as old" (BAO, minimal maintenance model). Most of the papers concerning the stochastic behavior of railroad systems assume two types of maintenance: perfect and minimal maintenance. However, Lee, Kim & Lee (2008) analyzed the failure data of a door system in Metro EMU and the effect of preventive maintenance was imperfect. It is seen that the imperfect maintenance is of great significance in practice. This article describes how to deal with the maintenance effect in reliability studies of rolling stocks. Maintenance policies under imperfect maintenance are described and the method is proposed to evaluate their performance.

  • PDF

Optimal Maintenance Cycle for Aviation Oil Testing Equipment under the Consideration of Operational Environment (운용환경을 고려한 항공오일시험장비의 최적정비주기 설정)

  • Kim, In Seok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • Purpose: Military maintenance involves corrective and preventive actions carried out to keep a system in or restore it to a predetermined condition. This research develops an optimal maintenance cycle for aviation oil testing equipment with acceptable reliability level and minimum maintenance cost. Methods: The optimal maintenance policy in this research aims to satisfy the desired reliability level at the lowest cost. We assume that the failure process of equipment follows the power law non-homogeneous Poisson process model and the maintenance system is a minimal repair policy. Estimation and other statistical procedures (trend test and goodness of fit test) are given for this model. Results: With time varying failure rate, we developed reliability-based maintenance cost optimization model. This model will reduce the ownership cost through adopting a proactive reliability focused maintenance system. Conclusion: Based on the analysis, it is recommended to increase the current maintenance cycle by three times which is 0.5 year to 1.5 years. Because of the system's built-in self-checking features, it is not expected to have any problems of preventative maintenance cycle.