• Title/Summary/Keyword: Prevention of disasters

Search Result 547, Processing Time 0.028 seconds

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

A Visualization of Traffic Accidents Hotspot along the Road Network (도로 네트워크를 따른 교통사고 핫스팟의 시각화)

  • Cho, Nahye;Jun, Chulmin;Kang, Youngok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.201-213
    • /
    • 2018
  • In recent years, the number of traffic accidents caused by car accidents has been decreasing steadily due to traffic accident prevention activities in Korea. However, the number of accidents in Seoul is higher than that of other regions. Various studies have been conducted to prevent traffic accidents, which are human disasters. In particular, previous studies have performed the spatial analysis of traffic accidents by counting the number of traffic accidents by administrative districts or by estimating the density through kernel density method in order to identify the traffic accident cluster areas. However, since traffic accidents take place along the road, it would be more meaningful to investigate them concentrated on the road network. In this study, traffic accidents were assigned to the nearest road network in two ways and analyzed by hotspot analysis using Getis-Ord Gi* statistics. One of them was investigated with a fixed road link of 10m unit, and the other by computing the average traffic accidents per unit length per road section. As a result by the first method, it was possible to identify the specific road sections where traffic accidents are concentrated. On the other hand, the results by the second method showed that the traffic accident concentrated areas are extensible depending on the characteristic of the road links. The methods proposed here provide different approaches for visualizing the traffic accidents and thus, make it possible to identify those sections clearly that need improvement as for the traffic environment.

Dynamic behavior Simulation for Explosion in Two-lane Horseshoe Shaped Tunnel (2차로 마제형 터널 내 폭발 시 동적 거동 시뮬레이션)

  • Shim, Jaewon;Kim, Nagyoung;Lee, Hyunseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.23-33
    • /
    • 2020
  • As the scale of the economy expands, the number of cases of damage in enclosed spaces such as tunnels is increasing due to the accident of transportation vehicles of dangerous substances such as explosive flammable materials that have increased rapidly. In the case of road tunnels in particular, in the aspect of protection against the long-winding trend and the environment in the downtown area, the number of cases of passing through the downtown area increases, and securing the safety of structures against unexpected extreme disasters such as explosions during tunnel passage is very urgent. For this reason, developed countries are already conducting a review of internal bombardment, but there are almost no evaluation and countermeasures for explosion risk in Korea. Therefore, in this study, in order to evaluate the explosion safety of road tunnels, a boiling liquid explosive explosion (BLEVE), which is considered to have the greatest explosion load among vehicles driving on the road, is set as a reference explosion source, and the equivalent TNT explosion load is used for simulation of the explosion. A method of conversion was presented. In addition, by applying the derived explosion load, dynamic behavior simulation was performed by assuming various variables for the tunnel, and the explosion safety of the tunnel was analyzed.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

Development of Decision Making Model for Optimal Location of Washland based on Flood Control Effect estimated by Hydrologic Approach (수문학적 홍수저감효과 기반의 천변저류지 최적위치 선정을 위한 의사결정모형의 개발)

  • Ahn, Tae-Jin;Kang, In-Woong;Baek, Chun-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.725-735
    • /
    • 2008
  • Due to recent climate change, flood damages have been increased, but it is difficult to construct large hydraulic structure for flood control such as dam because of environmental, economical and political problems. For this reason, several researches and studies have tried to use washland as an alternative of hydraulic facility. Because sizes of washlands are usually smaller than those of dams or reservoirs, there can be many available locations for washlands in a basin and proper combination of these locations can reduce flood disasters efficiently. However, in case there are many available locations for washland and many combinations to consider, it is very difficult to determine the optimal combination which yields to provide the maximum benefit. For the more, hydraulic approach that used in previous studies to calculate flood reduction effect needs a lot of time for calculation and sometimes can not give the final result. In this study, the flood reduction effect of washland is calculated by hydrologic approach and decision making model for optimal location of washland using genetic algorithm for determination of optimal solution is developed. The developed model has been applied to the Ansung River basin in order to examine the applicability and the application result shows that developed model can be used as decision making model for washland.

Development of a USN-Based Monitoring Scenario for Slope Failures (USN 기반의 사면붕괴 모니터링 시나리오 개발)

  • Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.122-130
    • /
    • 2010
  • Seventy percent of Korea's national territory is covered with mountains, and the land is frequently exposed to typhoons and localized torrential downpours, particularly in July through September. For this reason, slope failure is one of the most frequent types of natural disasters in Korea. To prevent the damage caused by slope failure, the Korean government, academia and industry have strived together to develop and install a wired system for monitoring slope failures. However, conventional wired monitoring systems have been reported to have limitations, such as possible system errors caused by lightning, and the difficulties of restoration and management of the systems. To solve these problems, this research suggests a USN-based monitoring system for slope failures. First, the trend of slope measurement and USN technology was analyzed, and then the current status of damage caused by slope failures in Korea was reviewed. Next, a USN-based monitoring scenario for slope failures, incorporating both USN and slope monitoring technique, was developed. Finally, sensors were decided based on the developed scenario. It is expected that the results of this study will be utilized as fundamental data for the development of monitoring prototype systems for slope failures in the future. The development of the USN-based monitoring system for slope failures and its application in the field will also ultimately contribute to the prevention of slope failures and the minimization of related damage.

The Protective Effects of Black Garlic Extract for Blood and Intestinal Mucosa to Irradiation (방사선 조사 시 혈구 및 장점막에 대한 흑마늘 추출물의 보호효과)

  • Jung, Do-Young;Choi, Junhyeok;Kim, Joongsun;Choi, Hyeongseok;Bae, Minji;Park, Wonsuk;Min, Byungin
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • The radiation has been utilized in a number of fields, even though the use of plenty cause a variety of side effects. This study was confirmed for radiation protective effects of aged garlic to contribute to the prevention of disasters that are radiation exposure. We studied the Complete Blood cell Count(CBC) and the small intestine after feeding aged garlic extract into Sprague Dawley Rat which irradiated X-ray beam 7 and 13 Gy. Garlic extract was administered to the results in the experimental group showed a notable difference in the CBC of platelets (p<0.05), red blood cells (p<0.05) and early damaged white blood cells (p<0.05). In addition, it was confirmed that experimental group's small intestine crypt is more survival than irradiation group significantly. And experimental group has small intestine villi length almost similar to the normal group. result of the aged garlic study will be able to be of great benefit for the radiation relevant emergency management.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.

Design of an Integrated Monitoring System for Constructional Structures Based on Mobile Cloud in Traditional Towns with Local Heritage

  • Min, Byung-Won;Oh, Sang-Hoon;Oh, Yong-Sun;Okazaki, Yasuhisa;Yoo, Jae-Soo;Park, Sun-Gyu;Noh, Hwang-Woo
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.37-49
    • /
    • 2015
  • Sensors, equipment, ICT facilities and their corresponding software have a relatively short lifetime relative to that of constructional structure, so these devices have to be continuously fixed or exchanged during maintenance and management. Furthermore, software or analysis tools should be periodically upgraded according to advances in ICT and analysis technology. Conventional monitoring systems have serious problems in that it is difficult for site engineers to modify or upgrade hardware and analysis algorithms. Moreover, we depend on the original system developer when we want to modify or upgrade inner program structures. In this paper, we propose a novel design for integrated maintenance and management of a monitoring system by applying the mobile cloud concept. The system is intended for use in disaster prevention of constructional structures, including bridges, tunnels, and in traditional buildings in a local heritage village, we analyze the status of these structures over a long term or a short-term period as well as in disaster situations. Data are collected over a mobile cloud and future expectations are analyzed according to probabilistic and statistical techniques. We implement our integrated monitoring system to solve the existing problems mentioned above. The final goal of this study is to design and implement a monitoring system for more than 10,000 structures spread within Korea. Furthermore, we can specifically apply the monitoring system presented here to a bridge made from timber in Asan Oeam Village and a traditional house in Andong Hahoe Village to monitor for possible disasters. The entire system design and implementation can be developed on the LinkSaaS platform and the monitoring services can also be implemented on the platform. We prove that the proposed system has good performance by performing a TTA authentication test, web accommodation test, and operation test using emulated data.

SW Quality of Convergence Product: Characteristics, Improvement Strategies and Alternatives (융합 소프트웨어 품질의 특성, 개선 전략과 대안)

  • Min, Sang-Yoon;Park, Seung-Hoon;Lee, Nam-Hee
    • Journal of Convergence Society for SMB
    • /
    • v.1 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • In today and near future, most of the commercially manufactured IT products will be evolved into software convergence product. Recently, the embedded software products is called as 'Software Convergence Products.' This phenomenon does not simply show the trendy fashion, but has the seriously implication that the functionalities of IT product is accomplished and evolved via software technology, not via mechanical nor electrical means. It will become true that the quality of the convergence product is dominantly governed by the software it uses. Meanwhile, we are facing with the threatening fact that software defects in the mass products will requires tremendous amounts of cost proportional to the quantity of the product. We can remind ourselves of the disasters that have been already happened, such as Automotive recalls, Smart-phone recalls, and others. In software engineering, there have been large amount of work done in software quality improvement for the past couple of decades. Software process improvement, and testings are the representative ones. But we are facing with limitations of those traditional approaches in current convergence industry; exponentially increasing software sizes and rapid changes in software technology. In this paper, we analyze the characteristics of the software convergence industry, the limitations of the traditional Software quality improvement approaches. We suggest a new approaches in software quality improvement in different angles of thought and philosophy.

  • PDF