• 제목/요약/키워드: Prestressed girder

검색결과 322건 처리시간 0.022초

프리스트레스트 콘크리트 거더 철도교의 최적설계 (Optimum Design of Prestressed Concrete Girder Railway Bridge)

  • 조선규;윤석구;서동주;정재동;김현우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

I형 프리스트레스트 콘크리트 거더교의 활하중 분배 (Live Load Distribution in Prestressed Concrete I-Girder Bridges)

  • 김광양;강대희;이환우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

다단계 긴장 PSC 거더 철도교량의 고유진동수 및 감쇠비 평가를 위한 동적실험 (Dynamic Experiments of the Incrementally Prestressed Concrete Girder Railway Bridge for Evaluation of Natural Frequencies and Damping Ratios)

  • 김성일;조재열;여인호;이희업;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.98-101
    • /
    • 2006
  • As an alternative of conventional prestressed concrete (PSC) girders, various types of PSC girders are being developed and applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to design concept, these new types of PSC girders have considerable advantages to reduce their self-weight and make spans longer. However, dynamic interaction between bridge superstructures and passing trains would be sometimes one of critical issues in these more flexible railway bridges. Therefore, it is very important to evaluate modal parameters of newly designed bridges before conducting dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage.

  • PDF

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Time-dependent Material Properties in FCM Segment of Prestressed Concrete Box-Girder Bridge

  • Yoon, Young-Soo;Choi, Han-Tae;Kwon, Soon-Beom
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.99-107
    • /
    • 1999
  • In designing the Prestressed concrete box-girder bridge. dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which. therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of time-dependent characteristics. In this study the creep test was carried out for four different curing ages of concrete which were applied to the Prestressed concrete structure at the construction site, and the results of test were compared with the values of creep prediction proposed by the design code. Also the creep test was performed with step-wise incremental stresses and the results were compared to the analytical values.

  • PDF

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

6경간 SCP 거더교의 연속화에 따른 중간 지점부 구조거동에 관한 연구 (A Study on the Structural Behaviors of Interior Support of 6 Span SCP Continuous Girder Bridge)

  • 임성순;손석호;서기홍
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권4호
    • /
    • pp.135-143
    • /
    • 2004
  • 본 연구에서는 6경간 SCP(Steel Confined Prestressed Concrete) 거더교의 연속화에 따른 연속지점부의 구조거동에 대해 해석적인 방법과 실험적인 방법으로 콘크리트 바닥판의 균열 및 피로에 대한 사용성과 안전성을 분석하였다. SCP 거더의 구조거동을 분석하기 위해 기존의 PSC 이론과 강 거더 이론을 혼용하여 합성효과를 분석하였고, 정적재하실험과 피로실험에 의해 바닥판 콘크리트의 균열 발생 여부와 콘크리트의 응력 및 강재의 피로응력을 검토하였다. 검토 결과 실제 교량에 대해 내부지점을 연속화한 6경간 SCP 거더교는 공용하중에 대하여 콘크리트의 균열 및 피로에 대해서는 구조적으로 안전한 것으로 판단된다.

활하중 분배계수식 개발을 위한 I형 프리스트레스트 콘크리트 거더 교량의 구조해석 모델 (Structural Analysis Models to Develop Live Load Distribution Factors of Simply Supported Prestressed Concrete I-Girder Bridge)

  • 이환우;김광양
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.91-101
    • /
    • 2008
  • I형 프리스트레스트 콘크리트 거더 교량의 활하중 분배계수식을 개발하기 위한 구조해석 모델은 해석결과의 적정성과 함께 모델링의 용이성도 동시에 가지고 있어야 한다. 그 이유는 활하중 분배계수식의 개발 과정에서 무수히 많은 횟수의 구조해석이 필요하기 때문이다. 본 연구에서는 기존 연구와 설계실무에서 사용하고 있는 모델들을 비교하여 적정한 구조해석모델을 선정하였다. 또한 수치해석과 재하시험 결과와의 비교를 통하여 방호벽과 가로보의 휨 강성이 활하중분배에 미치는 영향을 분석하였다. 연구결과로서 I형 프리스트레스트 콘크리트 거더 교량의 구조해석에는 편심을 반영한 거더, 방호벽 및 가로보를 바닥판에 연결시킨 모델이 해석결과의 정확성과 모델링의 편이성을 동시에 만족시키는 측면에서 적합하였다. 그러나 방호벽은 강성변화에도 불구하고 활하중분배에 미치는 영향이 미소한 것으로 분석되었다. 편심을 고려한 가로보는 휨 강성 25% 이상에서는 강성변화에 따른 영향이 적었다. 따라서 거더는 바닥판과의 편심을 고려하여 강체요소로 연결하고, 방호벽은 무시하고, 가로보는 전 단면이 유효한 것으로 가정한 상태에서 편심을 주지 않는 모델을 I형 프리스트레스트 콘크리트 거더 교량의 활하중 분배계수식의 개발을 위한 최종 구조해석 모델로서 선정하였다.

가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례 (A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System)

  • 박현묘;허영;김윤환;김석태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.451-452
    • /
    • 2010
  • PSC I 거더교는 시공성, 경제성, 사용성, 안전성 등 모든 면에서 성능이 매우 우수하여 지금까지 가장 많이 건설되어 온 교량형식이다. 그러나, 국내의 경우에는 표준거더의 형고가 높게 설계되어 장지간화에는 제한적이었다. 따라서, 본 논문에서는 가로보 정착구조를 적용하고 다단계 인장기술을 이용한 연속화 PSC거더의 기술을 개발하는데 그 목적을 두었다.

  • PDF

PC 박스거더교량의 해석 및 전후처리 시스템 개발연구 (Analysis of the Segmentally Erected Prestressed Concrete Box-Girder Bridges and Pre & Post-Processing)

  • 오병환;이형준;이명규;전세진;박철림;김영진;임선택
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.385-390
    • /
    • 1995
  • In segmentally erected bridges, the structural systems are changed as the construction stages progress and redistribution of member forces occurs due to time dependent effects of concrete and relaxation of perstressing steel. Therefore, structural analysis is required at each construction stage. In this study, nonlinear analysis program of the segmentally erected prestressed concrete box girder bridges is developed to raise the efficiency in making input file for the main program and analysis of the results produced by the main program.

  • PDF