• Title/Summary/Keyword: Prestressed Concrete Box Girder Bridge

Search Result 73, Processing Time 0.025 seconds

Parametric Study on the Structural Characteristics of Extradosed PSC Box Girder Bridges (매개변수해석을 통한 Extradosed PSC 박스 거더교의 구조특성 분석)

  • Chung, Jee-Seung;Jeon, Jun-Chang;Park, Jin-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.74-80
    • /
    • 2016
  • In this paper, structural characteristics for an extradosed prestressed concrete box girder bridge are investigated in terms of selective parameters. These parameters are mainly associated with the structural details of the extradosed bridge and derived from currently available literatures regarding previous design drawings. The analyses have been carried out using general-purpose structural analysis program, RM-Space Frame. The parameters evaluated for the present study represent the most salient features of the extradosed bridge and are as follows; 1) span length ratio(side-span length to center-span length), 2) boundary condition of girder, 3) height of pylon, 4) anchorage location of external cables and 5) girder stiffness. The analytical predictions indicate that span length ratio and pylon height are reasonably adequate in the range of 0.55 to 0.60 and $L_m/8$ to $L_m/12$ respectively for the bridge under consideration. Also, demonstrated is the boundary condition of girder, in which rigid-connection details give more efficiency than the continuous details. In addition, considering structural characteristics of the extradosed bridge, it is desirable that the girder stiffness should be determined by the stress range of external cables rather than bending moment of girder.

Evaluation of time-dependent deflections on balanced cantilever bridges

  • Rincon, Luis F.;Viviescas, Alvaro;Osorio, Edison;Riveros-Jerez, Carlos A.;Lozano-Galant, Jose Antonio
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.487-495
    • /
    • 2021
  • The use of prestressed concrete box girder bridges built by segmentally balanced cantilevers has bloomed in the last decades due to its significant structural and construction advantages in complex topographies. In Colombia, this typology is the most common solution for structures with spans ranging of 80-200 m. Despite its popularity, excessive deflections in bridges worldwide evidenced that time-dependent effects were underestimated. This problem has led to the constant updating of the creep and shrinkage models in international code standards. Differences observed between design processes of box girder bridges of the Colombian code and Eurocode, led to the need for a validation of in-service status of these structures. This study analyzes the long-term behavior of the Tablazo bridge with data scarcity. The measured leveling of this structure is compared with a finite-element model that consider the most widely used creep and shrinkage models in the literature. Finally, an adjusted model evidence excessive deflection on the bridge after six years. Monitoring of this bridge typology in Colombia and updating of the current design code is recommended.

A Study on Stress Properties for Cable Anchorage zone of Cable Stayed Prestressed Concrete Box Girder (케이블로 지지된 프리스트레스트 콘크리트 박스거더 정착부의 응력특성에 관한 연구)

  • Tae, Ghi-Ho;Kim, Doo-Hwan;Byun, Yun-Joo;Song, Kwan Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.84-92
    • /
    • 2012
  • Anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress properties, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

Dynamic Load Allowance of Highway Bridges by Numerical Dynamic Analysis for LRFD Calibration (LRFD 보정을 위한 동적해석에 의한 도로교의 동적하중허용계수)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.305-313
    • /
    • 2008
  • A reliability based calibration of dynamic load allowance (DLA) of highway bridge is performed by numerical dynamic analysis of various types of bridges taking into account of the road surface roughness and bridge-vehicle interaction. A total of 10 simply supported bridges with three girder types in the form of prestressed concrete girder, steel plate girder, and steel box girder is analyzed. The cross sections recommended in "The Standardized Design of Highway Bridge Superstructure" by the Korean Ministry of Construction are used for the prestressed concrete girder bridges and steel plate girder bridges while the box girder bridges are designed by the LRFD method. Ten sets of road surface roughness for each bridge are generated from power spectral density (PSD) function by assuming the roadway as "Average Road". A three dimensionally modeled 5-axle tractor-trailer with its gross weight the same as that of DB-24 design truck is used in the dynamic analysis. For the finite element modeling of superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. The statistical mean and coefficient of variation of DLA are obtained from a total of 100 DLA results for 10 different bridges with each having 10 sets of road surface roughness. Applying the DLA statistics obtained, the DLA is finally calibrated in a reliability based LRFD format by using the formula developed in the calibration of OHBDC code.

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

  • Kim, Sung-Jae;Kim, Jang-Ho Jay;Yi, Seong-Tae;Noor, Norhazilan Bin Md;Kim, Sung-Chul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.1-17
    • /
    • 2016
  • Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies have been performed to develop less expensive and very safe precast prestressed concrete (PSC) curved girder. One method of reducing the construction cost of a PSC curved girder is to use a reusable formwork that can easily be adjusted to change the curvature and length of a girder. A reusable and curvature/dimension adjustable formwork called Multi-tasking formwork is developed for constructing efficient precast PSC curved girders. With the Multi-tasking formwork, two 40 m precast PSC box girders with different curvatures were constructed to build a two-girder curved bridge for a static flexural test to evaluate its safety and serviceability performance. The static flexural test results showed that the initial cracking load was 1400 kN, exceeding the design cracking load of 450 kN. Also, the code allowed deflection of 50 mm occurred at a load of 1800 kN, verifying the safety and serviceability of the precast PSC curved bridge constructed using the multi-tasking formwork.

Retrofit Scheme against Crack Growth of ILM Bridge Superstructure in accordance with Each Construction Stage (시공단계별 ILM 교량상부의 균열성장에 대한 보강방안)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1001-1006
    • /
    • 2000
  • These should be constructed partially, because many prestressed concrete box girder bridges in situ have large cross section and long span. Therefore, accurate prediction of differences, both elapse time of each construction stage and exposure of atmosphere at each position of cross section, is very important. Though it is importance, engineers are apt to overlook it. This study predicted cracks due to shrinkage and stress concentration phenomenon by each construction stage and then, ascertained reduction of tensile stresses after applying retrofit scheme.

Operational performance evaluation of bridges using autoencoder neural network and clustering

  • Huachen Jiang;Liyu Xie;Da Fang;Chunfeng Wan;Shuai Gao;Kang Yang;Youliang Ding;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.189-199
    • /
    • 2024
  • To properly extract the strain components under varying operational conditions is very important in bridge health monitoring. The abnormal sensor readings can be correctly identified and the expected operational performance of the bridge can be better understood if each strain components can be accurately quantified. In this study, strain components under varying load conditions, i.e., temperature variation and live-load variation are evaluated based on field strain measurements collected from a real concrete box-girder bridge. Temperature-induced strain is mainly regarded as the trend variation along with the ambient temperature, thus a smoothing technique based on the wavelet packet decomposition method is proposed to estimate the temperature-induced strain. However, how to effectively extract the vehicle-induced strain is always troublesome because conventional threshold setting-based methods cease to function: if the threshold is set too large, the minor response will be ignored, and if too small, noise will be introduced. Therefore, an autoencoder framework is proposed to evaluate the vehicle-induced strain. After the elimination of temperature and vehicle-induced strain, the left of which, defined as the model error, is used to assess the operational performance of the bridge. As empirical techniques fail to detect the degraded state of the structure, a clustering technique based on Gaussian Mixture Model is employed to identify the damage occurrence and the validity is verified in a simulation study.

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF