• 제목/요약/키워드: Prestressed Concrete

검색결과 1,030건 처리시간 0.026초

프리스트레스트 콘크리트 합성거더 교량의 피로해석 (Fatigue Analysis of Prestressed Concrete Composite Girder Bridges)

  • 김지상;오병환
    • 콘크리트학회지
    • /
    • 제5권4호
    • /
    • pp.135-144
    • /
    • 1993
  • 본 논문은 일정진폭의 피로하중을 받는 피리스트레스트 콘크리트 합성거더 교량의 피로해석 절차를 시간의 진행에 따른 재료 특성의 변화양상을 고려하여 정립하였다. 본 논문에서 제시된 방법은 피로하중의 재하에 따라 균열이 진전되면서 생기는 중립축의 이동현상을 고려하였으며, 해석결과는 기존의 제한된 실험자료와 부합되었다. 또한, 건설부에서 규정한 표준 I 단면의 프리스트레스트 콘크리트거더의 피로저항능력을 검토한 결과 충분한 안전도를 갖고 있음을 확인하였다. 그리고 이 방법의 적용으로 임의의 단면형상을 갖는 프리스트레스트 콘크리트 거더의 피로특성을 S-N 곡선의 형태로 나타낼 수 있도록 하였으며, 이는 향후 변동진폭하중하에서의 피로거동 해석에 유용하게 이용될 수 있을 것으로 사료된다.

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

화학적 프리스트레스가 도입된 강섬유 보강 콘크리트의 균열거동에 대한 연구 (A Study on Crack Behavior of Chemically Prestressed Steel Fiber Reinforced Concrete)

  • 심별;김영균;송하원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, a series of fracture tests are performed for the chemically prestressed steel fiber reinforced concrete (SFRC) manufactured with addition of expansive additives for the study of fracture behavior and characteristics. Cracking loads of the chemically prestressed SFRC are greater than that of normal concrete and those are also increased by increasing of steel fiber volume. Thus, it is necessary to obtain optimum steel fiber volume to induce chemically prestressing effectively to concrete members. The result of three-points bending tests shows that early-cracking resistance of the chemically prestressed SFRC is increased without increase of fracture energy. From the test, the tension softening curves are also obtained by poly-linear approximation method and simulated behaviors by using the determined tension softening curves agree with experimental results. And it is confirmed that cracking and ultimate behaviors of chemically prestressed SFRC can be predicted by using obtained fracture characteristics.

  • PDF

폭발하중을 받는 프리스트레스트 콘크리트 패널의 거동 (Behavior of Prestressed Concrete Panels under Blast Load)

  • 조은선;김민숙;박종일;이영학
    • 한국전산구조공학회논문집
    • /
    • 제27권2호
    • /
    • pp.113-120
    • /
    • 2014
  • 본 논문은 폭발하중을 받는 네 가지 부재의 거동을 해석하여 프리스트레스의 폭발에 대한 저항 효과를 검증하고자 하였다. 프리스트레스를 도입한 구조물 사용이 증가하고 있지만 그에 관한 방폭 연구는 미비한 실정이다. 콘크리트 패널, 철근 콘크리트 패널, 프리스트레스를 도입한 콘크리트 패널, 프리스트레스를 도입한 철근 콘크리트 패널을 변수로 TNT 500Kg을 이격거리 3m 위치에서 폭파시키는 시나리오를 가정하였다. 해석결과, 콘크리트와 철근 콘크리트 부재는 폭발이 발생한 후 지속적으로 변형이 발생하지만 프리스트레스를 도입한 패널은 폭발 시 초기에만 변형이 발생하는 결과를 볼 수 있었다. 이는 프리스트레스를 도입한 부재가 폭발하중에 대해 균열과 파괴를 제어한다는 것을 알 수 있다.

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

조립식 프리스트레스트 콘크리트 교각에 관한 해석적 연구 (Analytical Study on Precast Segmental Prestressed Concrete Bridge Piers)

  • 김태훈;진병무;김영진;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.178-181
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

  • PDF

고강도 콘크리트를 사용한 P.C. Beam교의 설계 (Design of P.C. Beam Bridge using High Strength Concrete)

  • 강상규;윤석구;이형준;정원기;이규정
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.446-449
    • /
    • 1997
  • The use of high strength concrete in the fabrication and construction of prestressed concrete beam bridges can result in the increase of girder spacings for standard shapes, as well as the increase of span lengths. The increase of girder spacings corresponds to the reduction of the required number of girders. This study shows that the use of high strength concrete make prestressed concrete beam bridges the economical alternative to any other bridge types. Also, this study has the purpose of giving aids to design of prestressed concrete beam. To achieve this purpose this study provides the plots resulting from research on relationships between the concrete strength of prestressed concrete beam, girder spacing and the number of strands in various span lengths.

  • PDF

Time-dependent Material Properties in FCM Segment of Prestressed Concrete Box-Girder Bridge

  • Yoon, Young-Soo;Choi, Han-Tae;Kwon, Soon-Beom
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.99-107
    • /
    • 1999
  • In designing the Prestressed concrete box-girder bridge. dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which. therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of time-dependent characteristics. In this study the creep test was carried out for four different curing ages of concrete which were applied to the Prestressed concrete structure at the construction site, and the results of test were compared with the values of creep prediction proposed by the design code. Also the creep test was performed with step-wise incremental stresses and the results were compared to the analytical values.

  • PDF

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.