• Title/Summary/Keyword: Prestressed Composite Girder

Search Result 56, Processing Time 0.027 seconds

Analysis of the variability of deflection of a prestressed composite bridge deck

  • Staquet, Stephanie;Detandt, Henri;Espion, Bernard
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.385-402
    • /
    • 2004
  • Nearly 400 composite railway bridge decks of a new kind belonging to the trough type with U-shaped cross section have been constructed in Belgium over the last fifteen years. The construction of these bridge decks is rather complex with the preflexion of precambered steel girders, the prestressing of a concrete slab and the addition of a 2nd phase concrete. Until now, they have been designed with a classical computation method using a pseudo-elastic analysis with modular ratios. Globally, they perform according to the expectations but variability has been observed between the measured and the computed camber of these bridge decks just after the transfer of prestressing and also at long-term. A statistical analysis of the variability of the relative difference between the measured camber and the computed camber is made for a sample of 36 bridge decks using no less than 10 variables. The most significant variables to explain this variability at prestressing are the ratio between the maximum tensile stress reached in the steel girders during the preflexion and the yield strength and the type of steel girder. For the same sample, the long-term camber under permanent loading is computed by two methods and compared with measurements taken one or two years after the construction. The camber computed by the step-by-step method shows a better agreement with the measured camber than the camber computed by the classical method. The purpose of the paper is to report on the statistical analysis which was used to determine the most significant parameters to consider in the modeling in order to improve the prediction of the behaviour of these composite railway bridge decks.

A Study on the Applicability of SCP Girder to Continuous Bridges (SCP 합성거더의 연속교 적용에 관한 연구)

  • Kim, Jung Ho;Lee, Sang Yoon;Park, Kyung Hoon;Hwang, Yoon Koog;Yoo, Gun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.101-111
    • /
    • 2006
  • The SCP girder, which compensates for the shortcomings of conventional girders through the effective composition of concrete, steel, and PS tendon, has recently been developed and applied on real bridges. Developed as a simple-support type, it may be applied on simple-support and continuous bridges by connecting the simple-support SCP girders to the interior supports. A continuous SCP girder, which has structural and cost advantages over the simple-support SCP girder, is proposed in this study. Likewise proposed herein is a new method of constructing a continuous SCP girder, using segments of the girder sequentially. A two-span, half-scale specimen was designed and constructed to verify the propriety of the continuous SCP girder bridge. A static load test was also carried out, using this specimen, to examine the behavior of the continuous SCP girder. Based on the results of the study, it is expected that the continuous bridge that uses the continuous SCP girder can guarantee the structural safety of the simple-support SCP girder.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Assessment for Extending Span Ranges of PSC Girder Bridges : II. Application to a Sample Bridge (PSC 거더교의 장경간화 평가 기법 : II. 예제 분석)

  • Jeon, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.243-250
    • /
    • 2009
  • The purpose of this study is to investigate several strategies that can be used to extend the span of conventional PSC girder bridge and to propose a systematic procedure to evaluate the effect of each strategy on the span. In the preceding companion paper, fundamental equations were derived which constitute the assessment graphs and a possible domain for the design. Quantitative evaluation for extension of the span follows here by adopting a sample PSC girder bridge. It apparently shows a number of advantages of the proposed scheme in finding out why and how each strategy contributes to the span extension and in suggesting further improvement for a longer span. The results imply that increasing the strength of a girder, the multistage prestressing with the secondary tendons prestressed before composite action with a deck, and Decked PSC girder are very effective among the strategies examined. It is expected that the span of the PSC girder bridge can be well extended up to 50 m to 70 m which corresponds to a span of the conventional box girder bridges.

A Study on the Design of Two-Span Continuous P.S. Composite Bridges (2경간 P.S. 연속합성보 교량의 설계에 관한 연구)

  • 구민세;신동기;이재혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.203-210
    • /
    • 1995
  • A construction method for continuous prestressed Composite Bridges(PCB's) is developed and successfully applied to the design of two-span continuous PCB's of five different span lengths. The construction of continuous PCB's goes through 17 different loading conditions. for each loading condition, the allowable stress design method is used to determine section properties. The analytical results of two-span continuous PCB's arc compared with those of simple PCB's. The comparison shows that the use of the proposed method can reduce 10-15 percents of the concrete section area and approximate 28 percents of the steel section area, as well as 5-8 percents of the girder height. The study indicates that the use of the proposed PCB's method can significantly reduce construction and maintenance costs of bridges.

  • PDF

A study on Development of Methods to Rehabilitate the Damaged Prestressed Concrete beam Using Glass Fiber (유리섬유를 이용한 손상된 프리스트레스트 콘크리트 보의 보강공법 개발연구)

  • Kang, Won-Ho;Han, Man-Yop;Lee, Taek-Sung;Rhu, Young-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.167-175
    • /
    • 1999
  • Many composite girder bridges have been constructed for about thirty five years. Nowadays they are aged or deteriorated because of the increase in traffic and vehicle loads. In this study, the effect of strengthening with glass fiber sheet is investigated to estimate the possibility for applying to damaged prestressed concrete bridges. One normal and eight cracked specimens which had been preloaded were tested. The cracked specimens were strengthened with either external prestressing or bonding glass fiber sheet, or using both methods. The results showed that the maximum loads are almost same for both methods. So it seems that the strengthening with glass fiber sheet can be used for strengthening damaged prestressed concrete girders. It is important that proper devices should be selected to prevent glass fiber sheet from premature bonding failure below its maximum load, which is similar to end anchorage problem in external prestressing method. It is proved that the devices proposed in this paper have sufficient anchoring capability to increase load carrying capacity.

Behaviors of Joints with Perfobond Rib Shear Connectors in Steel-PSC Hybrid System (Perfobond Rib을 적용한 강-PSC 혼합구조 연결부의 거동 평가)

  • Kim, Sang Hyo;Lee, Chan Goo;Yoon, Ji Hyun;Won, Jeong Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.647-657
    • /
    • 2009
  • This paper studies the behavior of joints in steel-PSC (prestressed concrete) hybrid beams, which is necessary for the application of hybrid beams to spliced girder bridges, and proposes a new type of joint with improved construction convenience and structural behavior. In the proposed joint, perfobond rib shear connectors are attached to the upper and lower plates, which are expanded from the steel girders and located between the steel girder and the PSC girder. The experimental tests were performed on hybrid beams with the suggested joint. The results showed that all the beams had similar ultimate strengths and failure modes, due to the failure of their PSC parts. The composite action of the perfobond ribs was verified by examining the initial stiffness and cracks of the test beams. In addition, the test beams showed a higher degree of ultimate strength than the beams with stud shear connectors in the joints that had been previously studied. Thus, the proposed joint is effective for the steel-PSC hybrid beam.

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block (프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증)

  • Park, Sangki;Kim, Jaehwan;Jung, Kyu-San;Seo, Dong-Woo;Park, Ki-Tae;Jang, Hyun-Ock
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.67-77
    • /
    • 2022
  • In South Korea, U-type girder development was attempted as a means to increase the length of I-type girder, but due to the large self-weight according to the post-tension method, the application of rail bridges of 30m or less is typical. There are not many examples of application of pre-tension type girder. This study does not limit the post-tension method, but applies the pre-tension method to induce a reduction in self-weight and materials used due to the reduction of the cross-section. In addition, we intend to apply the on-site pre-tensioning method using the internal reaction arm of the U-type girder. The prestressed concrete U-type girder bridge is composed of a concrete deck slab and a composite section. Compared to the PSC I-type, which is an open cross-section because the cross section is closed, structural performance such as resistance and rigidity is improved, the safety of construction is increased during the manufacturing and erection stage, and the height ratio is reduced due to the reduction of its own weight. Therefore, it is possible to secure the aesthetic scenery and economical of the bridge. As a result, it is expected that efficient construction will be possible with high-quality factory-manufactured members and cast-in-place members. In this paper, the introduction of the pre-tension method on-site and the analytical performance verification of the anchoring block for tension are included.