• Title/Summary/Keyword: Prestress effect

Search Result 93, Processing Time 0.029 seconds

Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.881-901
    • /
    • 2016
  • In this study, a method to compensate the effect of temperature variation on impedance responses which are used for prestress-loss monitoring in prestressed concrete (PSC) girders is presented. Firstly, an impedance-based technique using a mountable lead-zirconate-titanate (PZT) interface is presented for prestress-loss monitoring in the local tendon-anchorage member. Secondly, a cross-correlation-based algorithm to compensate the effect of temperature variation in the impedance signatures is outlined. Thirdly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at the tendon-anchorage. A series of temperature variation and prestress-loss events are simulated for the lab-scale PSC girder. Finally, the feasibility of the proposed method is experimentally verified for prestress-loss monitoring in the PSC girder under temperature-varying conditions and prestress-loss events.

Second order effects of external prestress on frequencies of simply supported beam by energy method

  • Fang, De-Ping
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.687-699
    • /
    • 2014
  • Based on the energy method considering the second order effects, the natural frequencies of externally prestressed simply supported beam and the compression softening effect of external prestress force were analyzed. It is concluded that the compression softening effect depends on the loss of external tendon eccentricity. As the number of deviators increases from zero to a large number, the compression softening effect of external prestress force decreases from the effect of axial compression to almost zero, which is consistent with the conclusion mathematically rigorously proven. The frequencies calculated by the energy method conform well to the frequencies by FEM which can simulate the frictionless slide between the external tendon and deviator, the accuracy of the energy method is validated. The calculation results show that the compression softening effect of external prestress force is negligible for the beam with 2 or more deviators due to slight loss of external tendon eccentricity. As the eccentricity and area of tendon increase, the first natural frequency of the simply supported beams noticeably increases, however the effect of the external tendon on other frequencies is negligible.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

Determination of Effective Prestress of Post-tensioned Precast Bridge Piers (포스트텐션 조립식 교각의 유효프리스트레스 크기 결정)

  • Shim, Chang Su;Koem, Chandara
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • In this paper, a design concept of post-tensioned precast bridge piers was proposed to improve seismic behavior of the bridge pier. Mild reinforcing bars are placed continuously along the height of the column. Prestressing tendons are also provided to obtain re-centering capability for seismic events. Arrangement of the axial steels to prevent buckling of rebars at plastic hinge region was suggested and enhanced seismic performance was verified by experiments. Moment-curvature analyses were performed to evaluate the effect of effective prestress on seismic behavior after verifying the calculation method by cyclic tests of the precast columns. A real bridge pier was designed to investigate the seismic performance according to different level of effective prestress. Level of effective prestress showed obvious effect on crushing displacement but negligible effect on lateral displacement at fracture of tendons and reinforcements.

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.57-70
    • /
    • 2018
  • For the long-term structural health monitoring of civil structures, the effect of ambient temperature variation has been regarded as one of the critical issues. In this study, a principal component analysis (PCA)-based algorithm is proposed to filter out temperature effects on electromechanical impedance (EMI) monitoring of prestressed tendon anchorages. Firstly, the EMI monitoring via a piezoelectric interface device is described for prestress-loss detection in the tendon anchorage system. Secondly, the PCA-based temperature filtering algorithm tailored to the EMI monitoring of the prestressed tendon anchorage is outlined. The proposed algorithm utilizes the damage-sensitive features obtained from sub-ranges of the EMI data to establish the PCA-based filter model. Finally, the feasibility of the PCA-based algorithm is experimentally evaluated by distinguishing temperature changes from prestress-loss events in a prestressed concrete girder. The accuracy of the prestress-loss detection results is discussed with respect to the EMI features before and after the temperature filtering.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

Identification of prestress force in a prestressed Timoshenko beam

  • Lu, Z.R.;Liu, J.K.;Law, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.241-258
    • /
    • 2008
  • This paper presents a new identification approach to prestress force. Firstly, a bridge deck is modeled as a prestressed Timoshenko beam. The time domain responses of the beam under sinusoidal excitation are studied based on modal superposition. The prestress force is then identified in the time domain by a system identification approach incorporating with the regularization of the solution. The orthogonal polynomial function is used to improve the noise effect and obtain the derivatives of modal responses of the bridge. Good identification results are obtained from only the first few measured modal data under both sinusoidal and impulsive excitations. It is shown that the proposed method is insensitive to the magnitude of force to be identified and can be successfully applied to indirectly identify the prestress force as well as other physical parameters, such as the flexural rigidity and shearing rigidity of a beam even under noisy environment.

A Suggestion of New Approach for Measurement of Remaining Prestress (잔존프리스트레스 측정을 위한 새로운 접근법 제안)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.835-840
    • /
    • 2001
  • The new approach is a kind method of restoring temporary defect. Here, it is important for the defect not to occur problems of both local effect and global system. A basic concept is that it measures remaining prestress of PSC structures during the defect is restored. This study suggested new approach for measurement of remaining prestress. Two important results are obtained. First, safety problems, local stress concentration and global system, are very satisfied. Second, measurement value exists within error bound $\pm$ 1% in comparison with known value.

  • PDF

Effect of a Time Dependent Concrete Modulus of Elasticity on Prestress Losses in Bridge Girders

  • Singh, Brahama P.;Yazdani, Nur;Ramirez, Guillermo
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • Prestress losses assumed for bridge girder design and deflection analyses are dependent on the concrete modulus of elasticity (MOE). Most design specifications, such as the American Association of State Highways and Transportation Officials (AASHTO) bridge specifications, contain a constant value for the MOE based on the unit weight of concrete and the concrete compressive strength at 28 days. It has been shown in the past that that the concrete MOE varies with the age of concrete. The purpose of this study was to evaluate the effect of a time-dependent and variable MOE on the prestress losses assumed for bridge girder design. For this purpose, three different variable MOE models from the literature were investigated: Dischinger (Der Bauingenieur 47/48(20):563-572, 1939a; Der Bauingenieur 5/6(20):53-63, 1939b; Der Bauingenieur, 21/22(20):286-437, 1939c), American Concrete Institute (ACI) 209 (Tech. Rep. ACI 209R-92, 1992) and CEB-FIP (CEB-FIP Model Code, 2010). A typical bridge layout for the Dallas, Texas, USA, area was assumed herein. A prestressed concrete beam design and analysis program from the Texas Department of Transportation (TxDOT) was utilized to determine the prestress losses. The values of the time dependent MOE and also specific prestress losses from each model were compared. The MOE predictions based on the ACI and the CEB-FIP models were close to each other; in long-term, they approach the constant AASHTO value. Dischinger's model provides for higher MOE values. The elastic shortening and the long term losses from the variable MOE models are lower than that using a constant MOE up to deck casting time. In long term, the variable MOE-based losses approach that from the constant MOE predictions. The Dischinger model would result in more conservative girder design while the ACI and the CEB-FIP models would result in designs more consistent with the AASHTO approach.