• 제목/요약/키워드: Pressurized tank

검색결과 53건 처리시간 0.026초

위험물 수송용 탱크화차에 대한 유한요소 해석 (FEM analysis of the tank car for carrying hazardous materials)

  • 임충환;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1540-1545
    • /
    • 2007
  • In these days, many kinds of tank car such as Oil tank car, Asphalt tank car, Sulfuric Acid tank car and Propylene tank car are used for carrying hazardous materials. Although they have a lot of dangerous possibilities when they meet with accidents examples of collisions and derailments there are not prescribed methods or standards for structural analysis using FEM. In this study, the structural stress analysis for an Asphalt tank car(Non-pressurized tank) and a Propylene tank car(Pressurized tank) was performed using the FEM refer to the test method in JIS E 7102(Design Methods for Tanks of Tank Cars). And then we suggested the tank car analysis procedures and considered the results.

  • PDF

C-Type LH2 운송선박 운항 및 하역공정 전산모사를 통한 LH2 탱크 거동 분석 (Analysis of LH2 Tank Behavior through Computational Simulation of C-Type LH2 Carrier on Voyage and Unloading Process)

  • 김동혁;이영범;서흥석;모용기;이치훈
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.827-837
    • /
    • 2022
  • If the hydrogen industry is activated, the introduction of C-type and pressurized liquefied hydrogen (LH2) tank suitable for small and medium-sized transp- ortation and storage will be given priority in the future. Therefore in this paper, the behavior for the LH2 property changes and boil-off gas (BOG) treatment of the C-type cargo tank through voyage of the LH2 carrier and pressurized tank of the LH2 receiving terminal were analyzed through computational simulations by making assumptions about the carrier operation and unloading conditions.

가압식 대용량 액체수소 저장탱크의 단열 성능과 BOR (Insulation Performance and BOR of Pressurized Large-capacity Liquid Hydrogen Storage Tank)

  • 서흥석;이영범;김동혁;박창원
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.650-656
    • /
    • 2023
  • In order to efficiently control boil-off rate of a liquefied hydrogen tank, the important thing is to maintain an appropriate vacuum level. however, compared to small and medium-sized storage tank, it is very difficult to create and maintain vacuum in large-capacity storage tanks. In this study, we aim to determine the target level of future large-capacity storage tank technology development and secure basic data on performance test methods by analyzing the corelation between evaporation gas and thermal conductivity of liquefied hydrogen storage tanks.

자연순환형 태양열 온수기 축열조의 압력식 설계 개조 (Design Modification of a Thermal Storage Tank of Natural-Circulation Solar Water Heater for a Pressurized System)

  • 부준홍;정의국
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.45-54
    • /
    • 2007
  • For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.

밀폐된 공간에서 초저온 액화가스의 거동 (Behavior of cryogenic gases in a closed space)

  • 이현철;강형석;박두선;손무룡
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.48-51
    • /
    • 2000
  • The behavior of cryogenic liquid stored in a closed cryogenic tank has been studied at various liquid levels, as a function of pressure and temperature on time, assuming heat leak(NER) is 0.7%/day. The pressure depends, as expected, on the liquid-vapor ratio in a tank. The calculation shows that if liquid level is as high as 90%,much higher than the critical volume ration, in a closed tank of designed pressure 11 bar, it takes 5.4 to 15days for the entire volume of the tank to be filled with liquid and 11 to 22 days for the tank to be exploded. If a closed tank is full of liquid, it is extremely dangerous because of abrupt pressure increase so that the safety devices are necessary to vent out pressurized gas. These phenomena can be explained with the liquid heat capacity, latent heat and compressibility.

  • PDF

가압 염소포화액체 저장탱크의 2상 흐름 누출에 대한 유해위험거리의 예측을 위한 결과영향 모델링 방법론 (Consequence Modeling Methodology for Prediction of Hazard Distance for Two-phase Flow Release from the Pressurized Chlorine Saturated Liquid Storage Tank)

  • 송덕만;박영석;박종규
    • 한국가스학회지
    • /
    • 제2권4호
    • /
    • pp.7-17
    • /
    • 1998
  • 본 연구는 화학장치설비중 가압 염소포화액체 저장탱크의 2상흐름 연속누출에 대한 유해위험거리(또는 독성완충거리)를 정량적으로 예측하기 위한 결과영향 모델링 방법론을 개발하기 위한 것이다. 누출원 모델링은 미환경청의 가이드라인에 근거한 정교한 해석방법과 SuperChems 모델의 자체계산에 의하여 각각 수행되었다. 유해위험성 평가에서 법적 독성규제농도로서 사용되는 STEL, IDLH 및 ERPGs (ERPG-2와 ERPG-3) 농도들에 대하여 유해위험거리를 예측하였다. 비상대응계획 수립시 유해위험성 평가의 가이드라인으로 활용하기 위하여 특히 ERPG-2 농도에 대하여 누출원특성 및 기상변화들의 유해위험거리에 미치는 영향을 고찰하였다.

  • PDF

RecurDyn을 활용한 가속도추종 유로개방장치 해석 (Analysis of a Flow Passage Opening Device using RecurDyn)

  • 정성민;김영신;박정배;전필선
    • 한국추진공학회지
    • /
    • 제18권3호
    • /
    • pp.78-83
    • /
    • 2014
  • 항공기 또는 유도무기와 같은 고속 비행체의 가압식 연료탱크에는 연료가 한 방향으로 몰려 이송이 단절되는 것을 방지하기 위해 특별한 유로개방장치가 필요하다. 이러한 필요에 의해 가속도추종 방식의 유로개방장치가 발명되었으며 본 논문에서는 이 장치의 구동성능을 예측하고 성능에 영향을 미치는 주요 파라미터의 선정을 위해 동역학 해석 프로그램인 RecurDyn을 이용해 해석을 수행하였다. 해석결과를 통해 장치의 내부 균형추가 연료의 쏠림을 잘 추종해 유로를 개방시키는 것을 확인하였다.

Investigation of condensation with non-condensable gas in natural circulation loop for passive safety system

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hwang Bae;Hyun-Sik Park
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1125-1139
    • /
    • 2023
  • The system-integrated modular advanced reactor 100 (SMART100), an integral-type pressurized water small modular reactor, is based on a novel design concept for containment cooling and radioactive material reduction; it is known as the containment pressure and radioactivity suppression system (CPRSS). There is a passive cooling system using a condensation with non-condensable gas in the SMART CPRSS. When a design basis accident such as a small break loss of coolant accident (SBLOCA) occurs, the pressurized low containment area (LCA) of the SMART CPRSS leads to steam condensation in an incontainment refuelling water storage tank (IRWST). Additionally, the steam and non-condensable gas mixture passes through the CPRSS heat exchanger (CHX) submerged in the emergency cooldown tank (ECT) that can partially remove the residual heat. When the steam and non-condensable gas mixture passes through the CHX, the non-condensable gas can interrupt the condensation heat transfer in the CHX and it degrades CHX performance. In this study, condensation heat transfer experiments of steam and non-condensable gas mixture in the natural circulation loop were conducted. The pressure, temperature, and effects of the non-condensable gas were investigated according to the constant inlet steam flow rate with non-condensable gas injections in the loop.

진공 주유시 변압기 탱크의 소성발생 예측 (Prediction of the Plastic Deformation of the Transformer Tank at the Time of Vacuum Oiling)

  • 이정훈;김정찬;최재필
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권12호
    • /
    • pp.540-545
    • /
    • 2005
  • The transformer tank is pressurized by atmosphere at the time of vacuum oiling and, plastic deformation occurs at the section of stress concentration on transformer tank at this time. It is important to predict where the sections of stress are in order to prevent deformation and to add reinforcement. This paper presents prediction results where the sections of stress are occurred and whether plastic deformation occur or not, using structure analysis program(ANSYS-design program).