• 제목/요약/키워드: Pressurized fluidized bed

검색결과 30건 처리시간 0.014초

가압유동층연소로에서 석탄의 연소 및 배가스특성 연구 (A Study on Combustion & Flue Gas Characteristics of Coal at Pressurized Fluidized Bed Combustor)

  • 한근희;오동진;류정인;진경태
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.677-686
    • /
    • 2000
  • The characteristics of combustion and of emissions in pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm, and the combustion temperatures are set to 850, 900, and $950^{\circ}C$. The gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The coal used in the experiment is Shenhwa coal in China. All experiments are executed at 2m bed height. Consequently, NOx & $N_2O$ concentration in the flue gas is increased with incresing excess air ratio but $SO_2$ concentration is decreased with incresing excess air ratio. CO concentration is maintained below 100ppm at over 15% of excess air ratio.

가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition)

  • 서형재;이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor)

  • 김하나;이동호;이승용;황택성;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

벤치규모 가압유동층연소로에서 석회석에 의한 국내무연탄의 탈황특성 (Desulfurization Characteristics of Domestic Anthracite by Limes at Bench Scale Pressurized Fluidized Bed Combustor .)

  • 한근희;류정인;진경태
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1373-1383
    • /
    • 2001
  • The desulfurization characteristics of anthracite in a bench scale pressurized fluidized bed combustor are investigated. The coal used in the experiment is domestic anthracite from Kangwon Taeback area. The desulphurization experiment is performed with limestone from Chungbuk Danyang. The pressure of the combustor is maintained at 6 atm, and the combustion temperatures are 850, 900, and 950$\^{C}$. The superficial gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The Ca/S mole ratios are 0.5, 1.5, 2.5 and 4.5 mole. All experiments are executed at 2m bed height. Consequently, SO$_2$ concentration in the flue gas is increased with incresing bed temperature and superficial gas velocity. However SO$_2$ concentration is decreased with incresing excess air ratio and Ca/S mole ratio.

가압유동층에서 석탄의 연소특성 (Coal Combustion Characteristics in Pressurized Fluidized Bed Combustor)

  • 진경태;한근희;박재현;손재익
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1998년도 춘계 학술발표회 논문집
    • /
    • pp.31-36
    • /
    • 1998
  • 가압유동층 복합발전(Pressurized Fluidized Bed Combustion Combined Cycle 또는 PFBC-CC)은 고효율 및 공해물질 배출이 적은 석탄이용 차세대 발전기술이다. 석탄을 연소하면서 발생되는 열은 스팀으로 회수하여 스팀터빈을 구동하고, 고온, 고압의 연소가스로 가스터빈을 구동하여 복합 발전함으로서 효율을 42- 45%까지 얻을 수 있으며, 유동층연소의 장점인 연소중 탈황과 낮은 질소산화물 배출특성으로 환경친화적이며 경제성이 우수한 청정석탄 이용기술이다. (중략)

  • PDF

가압유동층 복합발전용 세라믹 캔들필터의 제조 및 성능평가 (Fabrication and Evaluation of Ceramic Candle Filter for Pressurized Fluidized-Bed Combustion)

  • 이상훈;이승원;이기성;서두원;한인섭;박석주;박영옥;우상국
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.187-191
    • /
    • 2002
  • 현재 석탄의 액화 및 가스화에 관한 연구가 활발하게 이루어지고 있으며 경제성과 환경문제에 우수한 성능을 보이는 석탄가스화 복합발전 시스템(PFBC, Pressurized Fluidized-Bed Combustion)이 부각되고 있다. 가압유동층 복합발전 시스템은 약 6~10기압 및 석탄 연소열에 의한 750~90$0^{\circ}C$의 고온고압의 연소기체를 가스터빈에 사용하여 증기터빈과 함께 복합발전을 한다.(중략)

  • PDF

가압 유동층 반응기에서 산소공여입자의 합성가스 연소 특성 (Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 박상수;이동호;최원길;류호정;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-92
    • /
    • 2012
  • Syngas combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using simulated syngas and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction conditions and no NO emission at oxidation conditions. Moreover, OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration with temperature. However, fuel conversion and $CO_2$ selectivity increased and CO emission decreased as pressure and gas residence time increased.

가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향 (Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor)

  • 류호정;박상수;문종호;최원길;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

가압 기포유동층에서 산소전달입자들의 환원반응특성 (Reduction Characteristics of Oxygen Carriers in a Pressurized Bubbling Fluidized Bed)

  • 윤주영;배달희;백점인;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.589-596
    • /
    • 2016
  • Effects of pressure, temperature, gas velocity, and fuel flow rate on reduction of three oxygen carriers, SDN70, OC-1, OC-2, were measured and investigated in a pressurized bubbling fluidized bed reactor. Among three oxygen carriers OC-2 was selected as the best oxygen carrier in view of fuel conversion and $CO_2$ selectivity. However, all oxygen carriers showed good reactivity even at high pressure conditions. SDN70 particle showed maximum reactivity at $900^{\circ}C$ and low reactivity at $950^{\circ}C$. However, reactivity decay of OC-1 and OC-2 particles at high temperature condition was negligible. The fuel conversion and the $CO_2$ selectivity slightly decreased as the gas velocity increased, whereas they are slightly increased as the fuel concentration increased.

Alstom Power의 가압유동층 복합발전 시스템 특성 (The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System)

  • 이윤경;주용진;김종진
    • 에너지공학
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2003
  • 가압유동층 연소 유닛은 1~1.5 MPa, 연소 온도 850~87$0^{\circ}C$ 조건으로 운전된다. 가압 석탄 연소 시스템은 전열관을 통한 열전달로 증기를 생산하며 가스터빈으로 공급될 고온 가스를 생산한다. 가스 중의 고체 잔류물에 의한 가스터빈의 성능 저하 때문에 가스 정제가 매우 중요하며 석탄과 흡수제 및 연소 공기를 가압하여야 하고 배가스와 회 제거 시스템에서는 감압을 해야 하기 때문에 운전이 다소 복잡하다. 증기터빈 대 가스터빈에서 생산되는 전력의 비율은 약 80:20이고 모든 부하 범위에서 연소기와 가스터빈이 서로 적절히 조화를 이루어야 하기 때문에 PFBC와 복합 사이클 발전 루트는 독특한 제어 방식을 갖는다. 유동층에 적용할 수 있는 가스의 최대 온도는 회 융점에 의해 제한을 받기 때문에 가스터빈은 일반 가스터빈에 비해 좀 특별하다고 할 수 있다. 회의 용융이 일어나지 않도록 하기 위한 최대 허용 가스 온도는 약 90$0^{\circ}C$이다. 가스터빈의 높은 압력비 때문에 압축시 인터쿨링을 사용하며 이는 상대적으로 낮은 터빈 입구의 온도를 상쇄하기 위한 것이다.