• Title/Summary/Keyword: Pressurized System

Search Result 492, Processing Time 0.034 seconds

An evaluation on sealing performance of elastomeric O-ring compressed and highly pressurized (압축 및 내압을 받는 고무 오링의 기밀 성능 평가)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-93
    • /
    • 2009
  • Elastomeric O-rings have been the most common seals due to their excellent sealing capacity, and availability in costs and sizes. One of the critical applications of O-ring seals is solid rocket motor joint seal where the operating hot gas must be sealed during the combustion. This has long been a design issue to avoid the system failure. For laterally constrained, squeezed and pressurized condition, deformed shape of O-ring was measured by computed tomography method and CCD laser sensor, compared with numerical calculations. As clearance gap changes, sealing performance had been evaluated on peak contact stresses at top, bottom and side contact surfaces. As clearance gap increases, peak contact stresses and contact widths in top and side contact surfaces increase, and the asymmetry of stress distributions is promoted due to pressure increase. It is suggested that peak stress of bottom contact surface can be approximated by simple superposition of peak ones due to squeeze and pressure. Under pressurized condition, sealing performance is dependent on not peak stresses of bottom and side contact surfaces but that of top.

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

Atmospheric and Pressurized Operation of a 25 kW MCFC Stack (25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전)

  • Koh, Joob-Ho;Seo, Hai-Kung;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF

Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Rahgoshay, Mohammad;Sayareh, Reza;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.975-981
    • /
    • 2016
  • The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

Investigation of Combustion Characteristics of Low Calorific Value Syn-gas Using Lab-scale Pressurized Oxy-Combustion System (실험실 규모의 가압 순산소 연소 시스템을 이용한 저열량 합성가스의 연소특성 분석 연구)

  • Kim, Donghee;Lee, Youngjae;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.65-68
    • /
    • 2015
  • Agreeable to the latest enviromental problem, CCS(Carbon Capture&Storage) technology is more significant. As these issues, Oxy-Combustion is one of the technology that realize the CCS technology and large scale field test proceeding at other places. The aims of this research were to evaluate the combustion characteristics of pressurized oxy-combusition that is attract attention as the next generation power plant. The experiments were conducted using a laboratory-scale pressuized oxy-combustor. The fuel used was low calorific value syn-gas that is mainly composed of CO(60%), $H_2$(27%). The burner was used co-axial burner, to investigate combustion characteristics, temperature in the reactor and the flue gas compositions were measured.

  • PDF

Reliability Evaluation Considering the Information and Human Factors in the Advanced Pressurized water Reactor 1400MWe under Uncertainty (신형경수로 1400에서 정보와 인적요인을 고려한 신뢰성 평가)

  • Kang Young - Sig
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.25-30
    • /
    • 2002
  • The problem of qualitative reliability system is very important issue in the digitalized nuclear power plant, because the failure of its system brings about extravagant economic loss, extensive environment destruction, and fatal damage of human. Therefore this study is to develop the reliability evaluation model through the normalized scoring model by the quantitative and qualitative factors considering the advanced safety factors In the Advanced Pressurized water Reactor 1400MWe(APR 1400) under uncertainty Especially, the qualitative factors considering the information and human factors for the systematic and rational justification have been closely analyzed. The reliability evaluation model can be simply applied in real fields in order to minimize the industrial accident and human error in the digitalized nuclear power plant.

  • PDF

Parametric Design Analysis of a Pressurized Hybrid System Combining Gas Turbine and Solid Oxide Fuel Cell (가스터빈과 고체산화물 연료전지를 결합한 가압형 하이브리드 시스템의 설계변수 해석)

  • Jeong, Young-Hyun;Kim, Tong-Seop;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1605-1612
    • /
    • 2002
  • Thermodynamic performance analysis has been carried out for a hybrid electric power generation system combining a gas turbine and a solid oxide fuel cell and operating at over-atmospheric pressure. Performance characteristics with respect to main design parameters such as maximum temperature and pressure ratio are examined in detail. Effects of other important design parameters are investigated including fuel cell internal parameters such as fuel utilization factor, steam/carbon ratio and current density, and system parameters such as recuperator efficiency and compressor inlet temperature.

Noise and Vibration Characteristics of Externally Pressurized Air proceeding Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성)

  • Park, Jung-Koo;Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1277-1282
    • /
    • 2003
  • The purpose of the present paper is to investigate the noise and vibration characteristics of externally pressurized air proceeding bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the width of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the width of the bearing.

  • PDF

Prediction of Noise and Vibration Characteristics of Externally Pressurized Air Journal Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성 예측)

  • Rho, Byoung-Hoo;Park, Jung-Koo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1028-1033
    • /
    • 2003
  • The purpose of this paper is to investigate the noise and vibration characteristics of externally pressurized air journal bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the length of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the length of the bearing.

Performance Analysis of a Flow Passage Opening Device through Low Speed Aircraft Captive Flight Tests

  • Jung, Sung-Min;Park, Jeong-Bae
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-9
    • /
    • 2017
  • In a pressurized fuel supply system of aircraft, a flow passage opening device is required to keep fuel continuously transferred from one tank to the other. The device utilizes balancing weights in order to follow up an acceleration at special conditions such as negative g. It is very difficult to test the device in a real high-speed and high-altitude test since severe test conditions and expensive supports are needed. Therefore, this paper deals with performance analysis of a flow passage opening device through low speed aircraft captive flight tests (CFT) including roll and negative-g maneuvers. It is shown that balancing weights in the device can open the passage in accordance with fuel position.