• Title/Summary/Keyword: Pressurized Plenum Under Floor Air Conditioning System

Search Result 2, Processing Time 0.016 seconds

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

UV Immune System of Personalized Space (개별공간의 자외선 살균 시스템)

  • Jeong, Ky-Bum;Choi, Sang-Gon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The air sterilization systems are investigated experimentally in this paper. The goal is to reduce bacteria, mold and viruses in office air by using a UV sterilizer installed inside a partition panel and wall-mounted unit. These systems allow occupants to turn the system on/off and to control the incoming air speed and direction. The partition air sterilization system conditions and sterilizes the air, and then delivers the clean air into the personal task area through the partition panels, which are connected to the pressurized under-floor plenum. Room air exits through the return grills mounted on the ceiling. The wall-mounted air sterilization system sterilizes the air, and then delivers the clean air to the personal task area from the wall. In this study a full-size experimental environment is established to investigate the immunization performance of these air sterilization systems. A typical office space scale is used in this study in order to find an optimal system to achieve a sterilized healthy micro-environment. Multiple system parameters, including volume flow rate and velocity of supplied air, were regulated during the experiments. The more air contact these air sterilization systems had, the better disinfection performance. Over 90% of eradication ratios were obtained by these two air sterilization systems. The results indicate that these systems can efficiently disinfect office air contamination.