• Title/Summary/Keyword: Pressureless sintered $\beta$-SiC

Search Result 23, Processing Time 0.045 seconds

Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC (상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화)

  • Lee, Jong-Kook;Yang, Gwon-Seung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

Properties of Pressureless Sintered SiC-$TiB_2$ Electroconductive Composites (무가압 소결법에 의한 SiC-$TiB_2$계 도전성 복합체의 특성)

  • Park, Mi-Lim;Ju, Jin-Young;Shin, Yong-Deok;So, Byung-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.118-122
    • /
    • 2001
  • The ${\beta}-SiC+TiB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density is over 78.83% of the theoretical density and increased with increasing sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 140 MPa for composites sintered at $1900^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest of 4.07 GPa at $1900^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 4.07 $MPa{\cdot}m^{1/2}$ for composites at $1900^{\circ}C$. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

Effects of Porosity on the Properties of Pressureless Sintered $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites (무가압 소결법에 의한 $\beta$-SiC-$ZrB_2$편(偏) 도전성(導電性) 복합체(複合體) 미치는 기공(氣孔)의 영향)

  • Ju, Jin-Young;Kwon, Ju-Sung;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.311-313
    • /
    • 1997
  • The effects of porosity on the pressureless sintered $\beta$-SiC-$ZrB_2$ composites with $Al_2O_3$ additions(4, 8, 12wt.%) under argon atmosphere were investigated. Relative density of $\beta$-SiC-$ZrB_2$ composites were decreased with the $Al_2O_3$ content. The relative density and fracture toughness of $\beta$-SiC-$ZrB_2$ with 4wt% $Al_2O_3$ are 93.2%, $1.323MPa{\cdot}m^{1/2}$ respectively. The Vicker's hardness and flexural strength of $\beta$-SiC-$ZrB_2$ with 12wt.% $Al_2O_3$ are 0.492GPa, 261MPa respectively. Fracture toughness of $\beta$-SiC-$ZrB_2$ composites are directly proportional to relative density.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures (Polycarbosilane이 코팅된 SiC와 Cu 혼합분말의 상압소결에 의한 Cu-30 vol% SiC 복합재료의 제조)

  • Kim, Yeon Su;Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.337-341
    • /
    • 2016
  • Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at $200^{\circ}C$ was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to $1600^{\circ}C$ for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the ${\alpha}$-SiC phase; peaks for ${\beta}$-SiC were newly appeared. The formation of ${\beta}$-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial ${\alpha}$-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at $1000^{\circ}C$. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.

Effect of Sintering Temperature on Properties of $\beta$-SiC-$ZrB_2$ Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\beta$-SiC-$ZrB_2$ 복합체의 특성에 미치는 소결온도의 영향)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1436-1438
    • /
    • 2001
  • The $\beta$-SiC + $ZrB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3$ + $Y_2O_3$ (6 : 4wt%) powder as a function of sintering temperature. The relative density showed the highest value of 81.1% at 1900$^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest value of 230 MPa for composites sintered at 1900$^{\circ}C$. The vicker's hardness and the fracture toughness showed the highest value of increased with increasing sintering temperature and showed the highest of 9.88 GPa and 6.05 $MPa{\cdot}m^{1/2}$ at 1900$^{\circ}C$. The electrical resistivity was measured by the Pauw method from 25$^{\circ}C$ to 700$^{\circ}C$. The electrical resistivity of the composites showed the PTCR (Positive Temperature Coefficient Resistivity).

  • PDF

Effect of $\alpha-SiC $seed on microstructure and fracture toughness of pressureless-sintered $\beta-SiC$ ($\alpha-SiC $seed의 첨가가 상압소결된 $\beta-SiC$의 미세구조와 파괴인성에 미치는 영향)

  • Young-Wook Kim;Won-Joong Kim;Kyeong-Sik Cho;Heon -Jin Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • $\beta-SiC $powder with or without the addition of 1 wt% of $\alpha-SiC$ particles (seeds) was pressureless-sintered at $1950^{\circ}C$ for 0.5, 2 and 4 h using $Y_3Al_5O_{12}$ (yttrium aluminum garnet, YAG) as a sintering aid. The introduction of $\alpha-SiC$ seeds into $\beta-SiC$ accelerated :he grain growth of elongated large grains during sintering, resulting in the coarser microstructure. The fracture toughnesses of materials with $\alpha$-SiC seeds and without $\alpha-SiC$ seeds sintered for 4 h were 7.5 and 6.1 $MPa\cdot \textrm m^{1/2}$, respectively. Higher fracture toughness of the material with seeds was due to the enhanced bridging by elongated grains, resulting from coarser microstructure.

  • PDF

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF