• Title/Summary/Keyword: Pressure-mapping sensor

Search Result 13, Processing Time 0.023 seconds

Development of Capacitive-type Pressure Mapping Sensor using Printing Technology

  • Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.24-27
    • /
    • 2017
  • In this study, I developed a simple and low cost process-printing a silver, carbon, dielectric, adhesive layer on PET films using screen printing technology and bonding the two films face-to-face-to fabricate a low price capacitive pressure-mapping sensor. Both electrodes forming the pressure measuring capacitor are arranged between the two PET films similar to a sandwich. Therefore, the sensor has the advantage of minimizing the influence of external noise. In this study, a $10{\times}10$ capacitance-type pressure-mapping sensor was fabricated and its characteristics were analyzed.

Development of a Lock-In Amplifier Array for Capacitive Type Pressure Mapping Sensor (정전용량 형 압력맵핑센서를 위한 록인 증폭기 어레이 개발)

  • Kim, Cheong-Worl;Lee, Young-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.63-67
    • /
    • 2017
  • In this study, We developed a simple and low cost capacitive pressure mapping sensor and microcontroller-base lock-in amplifier array. We developed capacitive type pressure mapping sensor by forming the electrode and adhesives on plastic films using only the printing process, and the finishing the process by bonding the two films. Lock-in amplifier array was based on a general purpose microcontroller and had only a charge amplifier as analog circuits. In this study, a $10{\times}10$ capacitive type pressure mapping sensor and lock-in amplifier array was fabricated and its characteristics were analyzed.

  • PDF

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Sonar Map Construction Based on Acoustics Theory for Autonomous Mobile Robots (음향학에 기반한 자율이동로봇의 초음파 확률격자지도 작성)

  • Lee Y.C.;Lee S.J.;Lim J.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.400-403
    • /
    • 2005
  • The sonar sensors can be divided into a piezo type and an electrostatic type according to a principle of an operating system. The electrostatic type of a sonar sensor is used for map building in this paper. If we know the characteristics of sonar sensor, we can derive the ultrasonic pressure equation from an acoustics theory. We, therefore, developed Ultrasonic Pressure Probabilistic Model (UPPM) to consider the sound pressure in the probability updating process. In this paper, we found that the quality of the resulting probability map is considerably improved, through combining the UPPM with the grid-based mapping algorithm.

  • PDF

Flexible tactile sensor array for foot pressure mapping system in a biped robot

  • Chuang, Cheng-Hsin;Liou, Yi-Rong;Shieh, Ming-Yuan
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.535-547
    • /
    • 2012
  • Controlling the balance of motion in a context involving a biped robot navigating a rugged surface or a step is a difficult task. In the present study, a $3{\times}5$ flexible piezoelectric tactile sensor array is developed to provide a foot pressure map and zero moment point for a biped robot. We introduce an innovative concept involving structural electrodes on a piezoelectric film in order to improve the sensitivity. The tactile sensor consists of a polymer piezoelectric film, PVDF, between two patterned flexible print circuit substrates (FPC). Additionally, a silicon rubber bump-like structure is attached to the FPC and covered by a polydimethylsiloxane (PDMS) layer. Experimental results show that the output signal of the sensor exhibits a linear behavior within 0.2 N ~ 9 N, while its sensitivity is approximately 42 mV/N. According to the characteristic of the tactile sensor, the readout module is designed for an in-situ display of the pressure magnitudes and distribution within $3{\times}5$ taxels. Furthermore, the trajectory of the zero moment point (ZMP) can also be calculated by this program. Consequently, our tactile sensor module can provide the pressure map and ZMP information to the in-situ feedback to control the balance of moment for a biped robot.

Fabrication of Inkjet Printed Strain Gauge Using PEDOT:PSS (PEDOT:PSS기반 잉크젯 프린팅 스트레인 게이지의 제작)

  • Kye, Ji Won;Han, Dong Cheul;Shin, Han Jae;Yeom, Se-hyuk;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.56-59
    • /
    • 2017
  • This paper presents the Inkjet-printed strain gauge using PEDOT:PSS. The strain gauge (width 0.6 mm, length 20 mm, thickness $0.3{\mu}m$) was printed on the PET film using PEDOT:PSS ink. The resistance variation of the fabricated strain gauge was measured by the digital multi-meter with the displacement range of -4 to 10 mm. As the measured result, resistance variation (${\Delta}R/R_0$) has approximately 0.75%, linearity of 99.87%. The fabricated strain gauge is expected to the various applications such as tape type pressure sensor, PMS(pressure mapping sensor), wearable devices.

Analysis of Gas Flow Behavior with Experiments for LPG releasing and 3D Mapping of Gas Sensor (LPG 누출 및 가스센서 3D Mapping을 통한 가스유동현상 분석)

  • Kim, Jeong Hwan;Lee, Min-Kyung;Kil, Seong-Hee;Lee, Jin-han;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.45-55
    • /
    • 2017
  • Release and fire/explosion tests of flammable gas are extremely dangerous. Furthermore, it is difficult to select the site where the experiment can be performed. In these reasons, gas flow analysis(CFD) has been used as much as possible. However, with the opening of the Energy Safety Empirical Research Center in Yeongwol-gun, Gangwon-do in October 2016, it was possible to conduct releases and detection tests of small scale combustible gas as well as large scale / high pressure / ultra low temperature experiments. In this study, LPG leaked after the calibration and placement of the sensor, the sensor detected LPG and the data were visualized as a contour map. And the differences between the actual release(28s, max 3.7[m]) and the analysis were analyzed compared to the FLACS analyzed under the same conditions.

Characteristics of the Buttock Interface Pressure According to Wheelchair Propulsion Speed and Various Back Reclined Seating Position (휠체어 추진속도 및 등받이 경사각도에 따른 둔부 압력 변화 특성)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • Pressure ulcers are serious complications of tissue damage that can develop in patients with diminished pain sensation and diminished mobility. Pressure ulcers can result in irreversible tissue damage caused by ischemia resulting from external loading. There are many intrinsic and extrinsic contributors to the problem, including interface tissue pressure, shear, temperature, moisture, hygiene, nutrition, tissue tolerance, sensory and motor dysfunction, disease and infection, posture, and body support systems. The purposes of this study were to investigate the relationship between buttock interface pressure and seating position, wheelchair propulsion speed. Seated-interface pressure was measured using the Force Sensing Array pressure mapping system. Twenty subjects propelled wheelchair handrim on a motor-driven treadmill at different velocities (40, 60, 80 m/min) and seating position used recline ($100^{\circ}$, $110^{\circ}$, $120^{\circ}$) with a wheelchair simulator. Interface pressure consists of average (mean of the pressure sensor values) and maximum pressure (highest individual sensor value). The results of this study were as follows; No significant correlation in maximum/average pressure was found between a static position and a 40 m/min wheelchair propulsion (p>.05). However, a significant increase in maximum/average pressure were identified between conditions of a static position and 60 m/min, and 80 m/min wheelchair propulsion (p<.05). No significant correlation in maximum pressure were found between a $90^{\circ}$ recline (neutral position) and a $100^{\circ}$, $110^{\circ}$, or $120^{\circ}$ recline of the wheelchair back (p>.05). No significant difference in average pressure was found between conditions of a $90^{\circ}$ recline and both a $100^{\circ}$ and $110^{\circ}$ recline of wheelchair back. However, a significant reduction in average pressure was identified between conditions of a $90^{\circ}$ and $120^{\circ}$ recline of wheelchair back (p<.05). This study has shown some interesting results that reclining the seat by $120^{\circ}$ reduced average interface pressure, including the reduction or prevention in edema. And interface pressure was greater during dynamic wheelchair propulsion compared with static seating. Therefore, the optimal seating position and seating system ought to provide postural control and pressure relief. We need an education on optimal seating position and a suitable propulsion speeds for wheelchair users.

  • PDF

Simulation of the Blood Pressure Estimation Using the Artery Compliance Model and Pulsation Waveform Model

  • Jeon, Ahyoung;Ro, Junghoon;Kim, Jaehyung;Baik, Seongwan;Jeon, Gyerok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, the artery's compliance model and the pulsation waveform model was proposed to estimate blood pressure without applying HPF (High Pass Filter) on signal measured by the oscillometric method. The method proposed in the study considered two ways of estimating blood pressure. The first method of estimating blood pressure is by comparing and analyzing changes in pulsation waveform's dicrotic notch region during each cardiac period. The second method is by comparing and analyzing morphological changes in the pulsation waveform during each cardiac period, which occur in response to the change in pressure applied on the cuff. To implement these methods, we proposed the compliance model and the pulsation waveform model of the artery based on hemodynamic theory, and then conducted various simulations. The artery model presented in this study only took artery's compliance into account. Then, a pulsation waveform model was suggested, which uses characteristic changes in the pulsation waveform to estimate blood pressure. In addition, characteristic changes were observed in arterial volume by applying artery's pulsation waveform to the compliance model. The pulsation waveform model was suggested to estimate blood pressure using characteristic changes of the pulsation waveform in the arteries. This model was composed of the sum of sine waves and a Fourier's series in combination form up to 10th harmonics components of the sinusoidal waveform. Then characteristic of arterial volume change was observed by inputting pulsation waveform into the compliance model. The characteristic changes were also observed in the pulsation waveform by mapping the arterial volume change in accordance with applied cuff's pressure change to the pulsation waveform's change according to applied pressure changes by cuff. The systolic and diastolic blood pressures were estimated by applying positional change of pulsation waveform's dicrotic notch region.

An Input Feature Selection Method Applied to Fuzzy Neural Networks for Signal Estimation

  • Na, Man-Gyun;Sim, Young-Rok
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.457-467
    • /
    • 2001
  • It is well known that the performance of a fuzzy neural network strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural network and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PCA), genetic algorithms (CA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods.

  • PDF