• Title/Summary/Keyword: Pressure-based

Search Result 8,180, Processing Time 0.038 seconds

Unstructured-grid Pressure-based Method for Analysing Incompressible flows (비정형격자 압력기준 유동해석기법을 이용한 비압축성 유동해석)

  • Kim J.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.42-47
    • /
    • 1998
  • The pressure-based methods are very popular in CFD because it requires less computer core memory compared to other coupled or density-based solvers. Currently structured-mesh methodology based on pressure-based algorithm is quite mature to apply to the practical problems. The unstructured mesh method needs much more computer memory than the structured-mesh method. However the pressure-based method utilizing the sequential approach does not require very large memory used for unstructured-mesh density-based solvers. The present study has developed the unstructured grid pressure-based method. Cell-centered finite volume method was selected due to robustness for imposing various boundary conditions and easy implementation of higher-order upwind scheme. The predictive capability of present method has validated against several benchmark problems.

  • PDF

Study on PIV-Based Pressure Estimation Method of Wave Loading under a Fixed Deck

  • Lee, Gang Nam;Duong, Tien Trung;Jung, Kwang Hyo;Suh, Sung Bu;Lee, Jae Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.419-427
    • /
    • 2020
  • In this study, a particle image velocimetry (PIV)-based pressure estimation method was investigated, with application to the wave-in-deck loading phenomenon. An experimental study was performed in a two-dimensional wave tank using a fixed deck structure under a focused wave, obtaining local pressures by pressure sensors, global loads by load cells, and instantaneous velocity fields using the PIV measurement technique. The PIV-based pressure estimation method was applied using the Euler equation as the governing equation, and the proper time step for the wave impact pressure was studied using the normalized root-mean-square deviation. The pressure estimation method showed good agreement for the local impact pressure in comparison with the measured pressure by the pressure sensors. However, some differences were observed in the peak pressure due to the limitations of the Euler equation and the sampling rate of the measurement system. Using the estimation method, the pressure fields during wave-in-deck loading were determined in the study, with an analysis of the mechanism of impact and negative pressure occurrence.

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

A Pressure Stabilization Technique for Incompressible Materials (비압축성 물체의 수치해 안정화 기법)

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.153-160
    • /
    • 1995
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babufka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. It is shown that the pressure solutions, although stable, exhibit sensitivity to the stabilization parameters.

  • PDF

Development of Plantar Pressure Measurement System and Personal Classification Study based on Plantar Pressure Image

  • Ho, Jong Gab;Kim, Dae Gyeom;Kim, Young;Jang, Seung-wan;Min, Se Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3875-3891
    • /
    • 2021
  • In this study, a Velostat pressure sensor was manufactured to develop a plantar pressure measurement system and a C#-based application was developed to monitor and collect plantar pressure data in real time. In order to evaluate the characteristics of the proposed plantar pressure measurement system, the accuracy of plantar pressure index and personal classification was verified by comparing with MatScan, a commercial plantar pressure measurement system. As a result, the output characteristics according to the weight of the Velostat pressure sensor were evaluated and a trend line with the reliability of r2 = 0.98 was detected. The Root Mean Square Error(RMSE) of the weighted area was 11.315 cm2, the RMSE of the x coordinate of Center of Pressure(CoPx) was 1.036 cm and the RMSE of the y coordinate of Center of Pressure(CoPy) was 0.936 cm. Finally, inaccuracy of personal classification, the proposed system was 99.47% and MatScan was 96.86%. Based on the advantage of being simple to implement and capable of manufacturing at low cost, it is considered that it can be applied to various fields of measuring vital signs such as sitting posture and breathing in addition to the plantar pressure measurement system.

Prediction of pressure equalization performance of rainscreen walls

  • Kumar, K. Suresh;van Schijndel, A.W.M.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.325-345
    • /
    • 1999
  • In recent years, rainscreen walls based on the pressure equalization principle are often used in building construction. To improve the understanding of the influence of several design parameters on the pressure equalization performance of such wall systems, a theoretical consideration of the problem may be more appropriate. On this basis, this paper presents two theoretical models, one based on mass balance and the other based on the Helmholtz resonator theory, for the prediction of cavity pressure in rigid rainscreen walls. New measures to assess the degree of pressure equalization of rainscreen walls are also suggested. The results show that the model based on mass balance is sufficiently accurate and efficient in predicting the cavity pressure variations. Further, the performance of the proposed model is evaluated utilizing the data obtained from full-scale tests and the results are discussed in detail.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Stabilization of pressure solutions in four-node quadrilateral elements

  • Lee, Sang-Ho;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.711-725
    • /
    • 1998
  • Mixed finite element formulations for incompressible materials show pressure oscillations or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure solution is the so-called Babu$\check{s}$ka-Brezzi stability condition, and the four-node elements based on mixed variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to the stabilization parameters.

Pressure Control of SR Driven Hydraulic Oil-Pump Using Data based PID Controller

  • Lee, Dong-Hee;Kim, Tae-Hyoung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.800-808
    • /
    • 2009
  • This paper presents a practical method of pressure control for a hydraulic oil-pump system using an SR (Switched Reluctance) drive. For a 6Mpa grade hydraulic oil-pump, a 2.6kW SR drive is developed. In order to get high performance pressure dynamics in actual applications, a data based PID control scheme is proposed. The look-up table from a pre-measured data base produces an approximate current reference based on motor speed and oil-pressure. A PID controller can compensate for the pressure error. With the combination of the two references, the proposed control scheme can achieve fast dynamics and stable operation. Furthermore, a suitable current controller considering the nonlinear characteristics of an SRM (Switched Reluctance Motor) and practical test methods for data measuring are presented. The proposed control scheme is verified by experimental tests.