• Title/Summary/Keyword: Pressure-Drop

Search Result 2,346, Processing Time 0.032 seconds

Effect of Orifice Geometry on Flow Characteristics of Liquid Jet from Single Hole Nozzle (오리피스 형상에 따른 단공노즐 액체제트의 유동특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • Effects of cavitation and hydraulic flip in circular and elliptical nozzles on the flow characteristics have been studied. Spray tests were conducted using injectors with different ratios of an orifice length(L) to a diameter(d) and of a major axis diameter(a) to a minor axis diameter(b). With the increment of an injection pressure drop, discharge coefficients slightly decreased in cavitation flows, and those suddenly dropped and were almost constant in hydraulic flip flows. For elliptical nozzles with L/b > 8 and L/a < 8, discharge coefficients and flow patterns showed different results from those in previous circular nozzles. When a flow in the elliptical nozzle was under steady condition, as the liquid column went downstream from the nozzle, its spray angle a little decreased in the plane of a major axis and increased in the plane of a minor axis.

A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model (1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구)

  • Park, Jaehyun;Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

Efficiency of catalyst-coated ceramic filter with acid treatment (촉매담지 세라믹 필터의 표면 산처리 효과)

  • Cho, Eul-Hoon;Suh, Kwang-Suck;Kim, Su-Hyo;Shin, Min-Chul;Shin, Byeong-Kil;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.91-95
    • /
    • 2008
  • Ceramic filter was prepared using cordierite powder and it was coated with $V_2O_5$ catalyst by vacuum impregnation method. The filter had the apparent porosity of 58 %, the compressive strength of 10 MPa and the pressure drop of 1200 Pa at the face velocity of 5 cm/see and 400$^{\circ}C$. $NO_x$ removal efficiency of only $V_2O_5$ coated on cordierite filter showed the removal efficiency of 80 %, and it was improved up to 90 % by increasing specific surface area of filter elements from the acid treatment. The high surface area is due to the removal of Mg and Al ions from the silicate structure and subsequent generation of free amorphous silicate on the surface of the cordierite.

Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle (페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

An Experimental Study on the Separating Effect of Pulverized Coal at Coal Nozzle with Coal Separator (석탄 노즐내 미분탄 분리장치의 입자 분리 효과에 관한 실험적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Lee, Gun-Myung;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.764-769
    • /
    • 2001
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutant emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle. Basically, a mixed flow of gas and particle in coal nozzle is required to have appropriate injection and concentration distribution at exit to achieve flame stability and low pollutant, but it is very difficult to obtain that without help of a coal separating device within nozzle. In this study, each distribution of air and coal flow rate is measured for the coal nozzle with coal separator developed by us. The coal concentration at exit is various according to inlet swirl values and positions of coal separator. Also pressure drop is measured for various operating conditions of this nozzle. From these results, we can find the separation characteristic of new developed coal separator, and select proper operation range of coal nozzle. When this coal nozzle is applied to actual plant, these investigations will be very useful to confirm the shape of coal separator to have efficient particle injection.

  • PDF

An Investigationi into the Dynamic Characteristics of Turbine and Gear Motor Type Flowmeters (터빈형과 기어모터형 유량계의 동특성 검토)

  • 예용택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2000
  • In hydraulic control system turbine and gear motor type flowmeters are widely used to measure the flow rate under steady flow conditions. With the recent growth of interest in the measurement of instantaneous values of unsteady flow rate the test of the transient response of these flowmeters are in some significance. however an unsteady flow rate mea-surment and its calibration method with a fast response and a high accuracy have not beendeveloped. In this research particularly the dynamic characteristics of turbine and gear motor type flowmeters are investigated experimentally and simple mathematical models are proposed. The measured flow rate waveforms are compared with those by remote instan-taneous flow rate measurement method(RIFM) which has been developed by author and used for calibration As the result of frequency response test gain and phase between the measured flow rate waveforms by turbine type flowmeter and those estimated by RIFM are in good agreement up to 70Hz For the gear motor type flowmeter th simulated results by a math-ematical model proposed here agree well with the experiment nearly up to 100Hz. Also it if sound that the pressure drop across the flowmeter is increased in proportion to the frequency of the flow rate variation in a high frequency region of more than 100Hz. It can be explained that the dealy of gear motor type flowmeter in high frequency regionis mainly attributed to a first order delay consisting of the inertia of gears and internal leakage of the gear motor.

  • PDF

Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Kim, Sung-Tae;Park, Yong-Hwan;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Sinusoidal Wave Fins (사인 웨이브 휜-관 열교환기의 공기측 성능에 관한 실험연구)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-367
    • /
    • 2004
  • The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 mm and 2.0 m), fin pitches (1.3mm to 1.7mm) and tube rows (one to three) were tested. Focus was given to the effect of the waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The i/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared to the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region. Possible explanation is provided considering the flow characteristics in wavy channels. Within the present geometric range, the effect of the waffle height on the heat transfer coefficient was not prominent. The effect of the fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed using the present data.

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids (지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 1996
  • The local hydraulic characteristics in a single phase flow of a 6$\times$6 rod bundle with neighboring different spacer grids were measured by using a LDV(Laser Doppler Velocimeter) system. 6$\times$6 rod bundle is formed by two 3$\times$6 rod bundles with different spacer grids. The objective of this study in a rod bundle is to investigate the thermal-hydraulic interactions between different spacer grids with different configurations and resistance. By using a LDV system, the velocity and turbulent intensity in axial and horizontal directions ore measured. Pressure drop measurements ore also performed to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. Implications concerning thermal mining due to spacer grids were investigated based on the hydraulic test results. Swirl factor, which is assumed as a qualitative criteria for DNB(departure from nucleate boiling), was defined and estimated from the horizontal velocity result.

  • PDF