• 제목/요약/키워드: Pressure-Based Boundary condition

검색결과 131건 처리시간 0.035초

2차원 비압축성 점성유동에 나타나는 압력 경계조건의 해결방안 (A solution method for the pressure-based boundary condition in the computation of two-dimensional incompressible viscous flow)

  • 이재헌
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.926-933
    • /
    • 1988
  • 본 연구에서는 SIMPLER 알고리즘이 응용된 기존 2차원 타원형 프로그램을 수 정하여 압력값의 절대치가 지배방정식의 경계조건으로 사용될 수 있도록 하였으며 이 를 이용한 계산예로서, 청정실과 유사한 유로에서의 유체 유동을 수치적으로 해석하여 수정된 프로그램의 타당성을 입증하였다.

동역학적 경계조건을 갖는 동수압 모형의 자유수면흐름에의 적용 (Application of a Non-Hydrostatic Pressure Model with Dynamic Boundary Condition to Free Surface Flow)

  • 이진우;정우창;조용식
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.103-109
    • /
    • 2010
  • 본 연구에서는 자유수면 흐름에 적용할 수 있는 연직방향에 대해 좌표변환된 3차원 동수압 모형을 제시하였다. 제시한 모형은 자유수면과 동수압의 해석을 위하여, 2중 예측-수정(double predictor-corrector)방법을 적용하였다. 본 연구에서는 정확한 동역학적 경계조건(자유수면에서의 압력은 0인 조건)을 적용하는 방법을 검토하였고, 제시한 모형을 이용한 수치모의 결과를 해석해와 비교하여 본 연구에서 제시한 모형의 우수성을 검증하였다.

비압축성 점성유동의 와도와 압력 경계조건 (On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows)

  • 서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF

튜브 클리닝 시스템 내부의 유동 특성에 관한 수치해석적 연구 (The Numerical Analysis of Fluid Flow in the Tube Cleaning System)

  • 정경철;이치우
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.63-68
    • /
    • 2014
  • The numerical analysis of fluid flow in the tube cleaning system is examined. The working flow used in this study is seawater, and the temperature change is not considered as the temperature change of seawater in the tube cleaning system is negligible. Also, the analysis is performed under the assumption of steady state. The screens of complicated morphologies are simplified for the analysis, and only one fourth of the tube cleaning system is modeled as the system has a symmetrical shape. The velocity inlet boundary condition is employed for the seawater inlet, whereas the outflow boundary condition is employed for two seawater outlets. In applying the outflow boundary condition for the system with more than two outlets, the flow rate can be arbitrarily assigned. In the analysis, the finite-volume method based numerical analysis tool, the pressure based solver, the standard k-$\varepsilon$ model are utilized, and the under relaxation factor is modified appropriately. From the analysis, the distribution of velocity vectors, pressure and path lines are obtained, and the physical characteristics of fluid flow in the tube cleaning system is well-examined.

와도를 기저로 한 비압축성 점성유동해석 방법 (A Vorticity-Based Method for Incompressible Viscous Flow Analysis)

  • 서정천
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

다수의 출구를 가지는 크린룸 내부의 기류분포에 관한 연구 (A Study on Flow Distribution in a Clean Room with Multiple Exits)

  • 이재헌;이시운;김석현
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.418-425
    • /
    • 1988
  • 종래의 전통적인 컴퓨터 프로그램에서는 속도 경계조건만을 처리할 수 있으며, 크린룸에서와 같이 넓은 출입구가 존재하는 실제적인 유동통로에서 이 속도 경계조건을 부여하기 위한 실제 속도의 측정은 간단하지 않다. 그렇다고 경계에서의 속도 분포를 가정하는 것은 물리적으로 타당하지 않는 상황을 의미할 수도 있다. 이러한 동기에서 본 연구에서는 비교적 측정이 쉬운 압력이 경계조건으로 알려졌을 때 공간 내부의 유동을 예측할 수 있는 컴퓨터 프로그램을 고안하여 문제를 해석하였다. 여기에서의 속도 경계조건은 다만 점착조건과 문제를 확정시키기 위하여 입구에서의 단면 방향 속도를 영으로 둔 것 뿐이다. 본 연구의 결과는 실용적으로 많이 이용되고 있는 간단한 Bernoulli 방정식에 의한 예측치와 비교되었으며 5% 이내의 차이로 정량적인 일치를 보았으며 이로써 본 연구의 타당성을 입증할 수 있었다. 본 연구에서는 유입구와 2개의 유출구에 압력경계조건이 부여된 크린룸 내부의 공기유동을 수치적으로 예측하고자 하였다. 유입구의 정압이 상대적으로 낮은 값을 가지는 왼쪽 유출구의 정압보다 150[Pa] 높은 경우에 왼쪽 유출구의 정압은 고정시키고 오른쪽 유출구의 정압을 0~150[Pa] 범위에서 25[Pa] 간격으로 변화시켜가면서 각 경우에 대한 크린룸내부의 유동특성과 유입구의 속도분포 그리고 2개 유출구에서의 유량분배와 크린룸 내부의 유동특성을 예측하였다. 상대적으로 높은 정압이 부여된 오른쪽 유출구로의 유량배분은 이 유출구에 부여되는 정압이 커짐에 따라 선형적으로 감소되었으나 유입구에서 역류가 형성될 수 있을 만큼 정압이 증가된 후에는 유량배분이 급격히 감소되었다.

  • PDF

CALCULATION OF FLOW FIFLD IN A CHANNEL SUBJECTED TO PRESSURE-BASED BOUNDARY CONDITION

  • 박종흥;이재헌
    • ETRI Journal
    • /
    • 제10권4호
    • /
    • pp.118-126
    • /
    • 1988
  • A numerical analysis was performed for the flow field in the vertical channels consist of dummy cards and active cards to define the hydrodynamic role of dummy card which is often installed in electronic equipment between active cards to control the cooling air distribution. For a given velocity profile at the inlet and a pressure-based boundary condition at the outlet of the computation domain, the percentage of the flow rate distribution through active channel and dummy channel formed by an active card and dummy card, respectively, were investigated. As a result of present analysis, the pecentage of flow rate through active channel increases quadraticaly with the increase of the ratio of the height of barrier to the width of the dummy channel.

  • PDF

파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가 (Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines)

  • 이억섭;김의상;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF