• 제목/요약/키워드: Pressure wave propagation

검색결과 214건 처리시간 0.026초

Pressure Wave Propagation in the Discharge Piping with Water Pool

  • Bang Young S.;Seul Kwang W.;Kim In-Goo
    • Nuclear Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.285-294
    • /
    • 2004
  • Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined.

자동차 배기계의 압력파 전파특성에 관한 연구 (A Study on the Characteristics of Pressure Wave Propagation in Automotive Exhaust System)

  • 차경옥;이준서;김형섭
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.18-26
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

관로에서 점성유체 유동의 압력파 전달에 관한 연구 (A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line)

  • 김형오;나기대;모양우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

수소 예혼합기의 정상 및 이상연소에 관한 수치해석 (A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture)

  • 손채훈;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

체적부하를 갖는 유체 전달관로의 압력전파 특성 (The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line)

  • 윤선주;손병진
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

점화기관 배기계의 압력과 전파특성에 관한 연구 (A Study on the Characteristics of Pressure Wave Propagation in Spark Ignition Engine Exhaust System)

  • 박진용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.72-78
    • /
    • 1996
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated gyulsating gas flow due the working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function. back pressure, and gradient of temperature in exhaust system.

  • PDF

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

양단자 회로망 분석을 이용한 기관배기계의 압력파 전달특성에 관한 연구 (A study of the transfer characteristics of pressure waves using two-port network analysis in exhaust system of engine)

  • 이준서;유병구;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.77-84
    • /
    • 1998
  • Based on experimental analysis, the characteristics of pulsating pressure wave propagation is clarified by testing of 4-stroke gasoline engine. The pulsating pressure wave in exhaust system is generated by pulsating gas flow due to working of exhaust valve. The pulsating pressure wave is closely concerned to the loss of engine power according to back pressure and exhaust noise. It is difficult to exactly calculate pulsating pressure wave propagation in exhaust system because of nonlinear effect. Therefore, in the first step for solving these problems, this paper contains experimental model and analysis method which are applied two-port network analysis. Also, it shows coherence function, frequency response function, back pressure, and gradient of temperature in exhaust system.

  • PDF

고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석 (Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System)

  • 김왕연;하종만;하태웅
    • 한국유체기계학회 논문집
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.