• 제목/요약/키워드: Pressure wave generator

검색결과 42건 처리시간 0.024초

Structural Analysis on the Arm and Floater Structure of a Wave Energy Converter

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.5-11
    • /
    • 2015
  • Ocean waves have huge amounts of energy, even larger than wind or solar, which can be extracted by some mechanical device. This can be done by creating a system of reacting forces, in which two or more bodies move relative to each other, while at least one body interacts with the waves. This moves the floater up and down. The floaters are connected to an arm structure, which are mounted on a fixed hull structure. Hence, the structure of the floater is very important. A static structural analysis with FSI (Fluid-Structure Interaction) analysis is conducted. To achieve the pressure load for the FSI analysis, the floater is simulated on a wave generator using rigid body motion. The structural analysis is done to examine the stresses on the whole system, and four types of flange and floater are optimized. The result shows that the structure of floater with wood support is the safest.

유압관로에서 비정상유동의 압력전파특성 (Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline)

  • 유영태;나기대;김지환
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Beam Tracing 기법을 이용한 수동 소나 센서의 수신 음압해석 프로그램 개발 (Development of Received Acoustic Pressure Analysis Program of CHA using Beam Tracing Method)

  • 권현웅;홍석윤;송지훈;전재진;서영수
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.190-198
    • /
    • 2013
  • In order to predict acoustic pressure distributions by exterior incident wave at Cylindrical Hydrophone Array (CHA) sensor's positions, acoustic pressure analysis is performed by using beam tracing method. Beam tracing method is well-known of reliable pressure analysis methods at high-frequency range. When an acoustic noise source is located at the center of rectangular room, acoustic pressure analysis is performed by using both beam tracing method and Power Flow Boundary Element Method (PFBEM). By comparing with results of beam tracing method and those of PFBEM, the accuracy of beam tracing method is verified. We develop the CHA pressure analysis program by verified beam tracing method. The developed software is composed of model input, sensor array creator, analysis option, solver and post-processor. We can choose a model option of 2D or 3D. The sensor array generator is connected to a sonar which is composed of center position, bottom, top and angle between sensors. We also can choose an analysis option such as analysis frequency, beam number, reflect number, etc. The solver module calculates the ray paths, acoustic pressure and result of generating beams. We apply the program to 2D and 3D CHA models, and their results are reliable.

진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석 (Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column)

  • 이광호;김도삼;정익한
    • 한국해안·해양공학회논문집
    • /
    • 제29권6호
    • /
    • pp.305-314
    • /
    • 2017
  • 단독의 파력발전변환장치를 설치하는 경우 경제성이 떨어지는 문제점이 있으므로 기존 혹은 신설의 방파제에 적용하여 파랑제어와 파랑에너지의 이용을 동시에 도모하는 방식이 많이 추진되어 왔다. 본 연구는 전편의 연구(Lee et al., 2014)에서와 같이 부유식방파제로 연구 개발된 공기주입식 부유식방파제에 진동수주형 파력발전시스템을 탑재한 경우를 대상으로 부유식방파제로의 기능과 파력발전장치로의 기능을 병행하여 검토하였다. 여기서, 전편의 연구(Lee et al., 2014)에서는 공기실내에서 공기의 동적거동에 단열변화에 따른 압축성을 고려한 반면에 본 연구에서는 비압축성의 경우에 구조물의 고정시 혹은 부유시에 각각에 대한 파랑변형율, 공기흐름속도 및 구조물의 운동을 검토하였으며, 공기의 동적거동에 대한 압축성의 고려여부에 따른 결과의 차이를 논의하였다. 수치해석법으로는 선형속도포텐셜이론에 기초한 경계요소법을 적용한다. 얻어진 모든 해석결과에 따르면 공기압축성을 고려한 전편의 연구와 거의 동일한 결과를 나타내었으며, 따라서 공기실내에서의 공기거동해석에 압축성을 고려하지 않는 본 해석이 보다 효율적이고, 유용한 것으로 판단된다.

토노메트리 방식 맥파 측정의 가압 각도에 따른 변동성 평가 (Variation Factor Assessment of Radial Artery Pulse by the Tonometry Angle of the Pulse Pressure Sensor)

  • 정창진;조정희;전민호;전영주;김영민
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.138-142
    • /
    • 2016
  • A pulse measurement by tonometry provides useful information for diagnosis, including not only blood pressure and heart rate but also parameters for estimating a condition of the cardiovascular system. Currently, various pulse measurement devices based on the tonometry have been developed. A reliability of these devices is determined by a positioning technic between the sensor and the blood vessel and a controlling technique of the pressurization level. An angle of the sensor for the pulse measurement seems to be highly related with a measured signal, however, the objective studies for this issue have been not published. In this paper, the variation of the pulse signals by tonometry direction was experimentally assessed according to the angle of the sensor. In order for guaranteeing the repeatability of the experiment, we used a pulse generator device, which can generate human pulse signal by using silicon tube and fluid pump, and developed a structure for precise adjustment of the angle and the pressurization level of the sensor. The angle of the sensor was acquired by an inclinometer, which was attached at the opposite side of the sensor. As results, a coefficient of variation (CV) of a maximum amplitude (MA) of the pulse wave was largely increased over the angle range of $-9{\sim}9^{\circ}$. Furthermore, the changes of the pulse shape showed different aspects according to the sign of the angle tilted along the blood vessel. It is expected that the results of this study can be helpful for developing more precise pulse measurement devices based on the tonometry and applying in clinic.

평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과 (Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure)

  • 김유나;김상인;김두수;이용식;육종관
    • 한국전자파학회논문지
    • /
    • 제28권8호
    • /
    • pp.646-652
    • /
    • 2017
  • 큰 부피의 플라즈마를 발생시키기 위하여 플라즈마 층을 포함하는 유전체 장벽 방전 구조(dielectric barrier discharge)를 제안하고, 발생기 동작 유무에 따른 모노스태틱 레이다 단면적(mono-static radar cross section)을 측정함으로써 대기압 플라즈마가 전자기파에 미치는 영향을 분석하였다. 다수의 전극을 평면으로 평행 배열함으로써 플라즈마 층의 부피를 증가시켰으며, 전극 배열과 수직인 방향의 전기장을 포함하는 전자기파를 입사시킴으로써 발생기와의 원치 않는 커플링을 최소화 시켰다. 실험 결과, 모노스태틱 레이다 단면적을 2 GHz부터 25 GHz까지 측정하였을 때, K band에서 최대 8 dB까지 감소하는 것을 확인하였다. 또한, 고전압 발생기의 인가 전압을 최대 20 kV까지 변화시킴으로써 원하는 주파수에서 플라즈마로 인한 감소치를 유연하게 조절 가능함을 보였다.

Irradiation of Intense Characteristic X-rays from Weakly Ionized Linear Plasma

  • Sato, Eiichi;Hayasi, Yasuomi;Tanaka, Etsuro;Mori, Hidezo;Kawai, Toshiaki;Takayama, Kazuyoshi;Ido, Hideaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.396-399
    • /
    • 2002
  • Intense quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 55 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to the molybdenum target by the electric field in the tube, the weakly ionized plasma, which consists of metal ions and electrons, forms by the target evaporating. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 20 kA with a charging voltage of 55 kV. When the charging voltage was increased, the linear plasma x-ray source grew, and the characteristic x-ray intensities of K-series lines increased. The quite sharp lines such as hard x-ray lasers were clearly observed. The quasi-monochromatic radiography was performed by a new film-less computed radiography system.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

열음향파 발생장치의 최적 작동 조건에 대한 실험적 연구 (Study of Optimum Operating Conditions of Thermal Acoustic Generator)

  • 신상웅;오승진;이윤준;김남진;천원기
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.131-137
    • /
    • 2013
  • 본 연구에서는 열음향 시스템의 음향파 출력에 대한 주요한 기하학적 변수에 대해 다루고 있다. 음향파의 출력은 스택의 위치와 스택의 길이, 입력 파워와 공진기의 길이에 의존한다. 본 실험을 통하여 최고의 실험 조건을 얻을 수 있었다. 실험결과에 의하면 최고 음압레벨은 폐쇄된 부분에서 공진기길이의 1/4 -1/2지점 사이에 스택을 위치시켰을 때, 공진기와 스택의 길이가 길 때, 그리고 입력전압이 증가할 때 나타난다. 또한 주파수의 경우 공진기의 길이가 200mm일 때 437Hz, 100mm일 때 885Hz를 기록하였다. 연구 결과 공진기의 길이가 짧을수록 더 높은 주파수를 얻을 수 있는 것을 알 수 있다.