• 제목/요약/키워드: Pressure turbulent flow

검색결과 746건 처리시간 0.022초

벌류트 압축기내의 난류유동 수치해석 (Numerical Analysis of Turbulent Flows in the Scroll Volute of Centrifugal Compressor)

  • 곽승현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.681-686
    • /
    • 2007
  • The flow analysis was made by applying the turbulent models in the scroll volume of centrifugal compressor. The $k-{\varepsilon}.\;k-{\omega}$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector the Pressure contour. the change of residual along the iteration number. and the dynamic head are simulated by solving the Navier-Stokes equations for the comparison of four example cases.

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측 (Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient)

  • 백성구;정명균;임효재
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성) (Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics))

  • 홍종우
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

선체주위 난류유동장의 해석에 관한 연구 (A Study on Turbulent Flow Fields around Ships)

  • 이승희;박종진
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.64-70
    • /
    • 1996
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verify the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

오목면 및 볼록면에 존재하는 난류경계층유동과 경사지게 분사되는 난류제트의 유동특성 (Flow Characteristics of Inclined Turbulent Jet Issuing into Turbulent Boundary Layer Developing on Concave and Convex Surfaces)

  • 이상우;이준식;이택식
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.302-312
    • /
    • 1992
  • Three dimensional velocity measurements of a 35.deg. inclined jet issuing into turbulent boundary layer on both concave and convex surfaces have been conducted. To investigate solely the effect of each curvature on the flow field, streamwise pressure variations are minimized by adjusting the shape of the opposite wall in the curved region. From the measured velocity components, streamwise mean vorticities are calculated to determine jet-crossflow interface. The results on convex surface show that the injected jet is separated from the wall and the bound vortex maintains its structure far downstream. On concave surface, the secondary flow in the jet cross-sections are enhanced and in some downstream region from the jet exit, the flow on the concave surface has been developed to Taylor-Gortler vortices

타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구 (A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder)

  • 최재호;조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성 (Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV)

  • 윤석주;이행남;손현철
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

고압 분사노즐의 최적형상에 관한 연구 (A Study on the Optimum Shape of High-Pressure Injection Nozzle)

  • 이종선;김형철
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.37-43
    • /
    • 2003
  • This study makes to flow analysis of computational fluid dynamics(CFD) according to the basic theory of turbulent flow regarding high-pressure injection nozzle. It also makes structural analysis to find out the structural validity of the optimum shape of high-pressure injection nozzle. It divides to two areas such as plunger areas and high-pressure injection nozzle area including plunger.

스크램제트 연소기 내의 난류 연소 유동 해석 (Numerical Analysis of Turbulent Combustion Flow in Scramjet Combustors)

  • 최정열;원수희;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.261-267
    • /
    • 2005
  • A comprehensive DES quality numerical analysis has been carried out for reacting flows in constant-area and divergent scramjet combustor configuration with and without a cavity. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel-air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the pervious studies. Much of the flow unsteadiness is related not only the cavity, but also to the intrinsic unsteadiness in the flowfield. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF