• Title/Summary/Keyword: Pressure turbulent flow

Search Result 747, Processing Time 0.023 seconds

ANALYSIS OF LAMINAR AND TURBULENT MIXED FLOW AROUND AN AIRFOIL (익형 주위의 층류와 난류가 혼합된 유동해석)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.87-89
    • /
    • 2009
  • In the present paper, transition turbulence model is applied to the NACA64(3)618 and detailed flow features are studied. The turbulence model is sensitive to the boundary layer grid quality and y+ of the grid was limited to 1. The prediction of the transition region is dependent on the local flow condition. The pressure coefficient distribution of the transition turbulence model is compared with that of the fully turbulent mode and the drag distribution of the transition turbulence model was compared with that of the wind tunnel test.

  • PDF

Numerical Analysis on Effects of Free-Stream Turbulence Intensity on the Three-dimensional Turbulent Flow Characteristics in a Turbine Cascade (자유유동 난류강도가 터빈 캐스케이드내 3차원 난류유동 특성에 미치는 영향에 관한 전산해석)

  • Yoon, Deok-Kyu;Lee, Wu-Sang;Kim, Dae-Hyun;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.371-374
    • /
    • 2006
  • The objective of this study is to determine the influence of free-stream turbulent intensity on the three-dimensional turbulent flow in a linear turbine cascade. The range of free-stream turbulence intensity considered is 0.7~10%. This study was performed numerically. The results show that the mass averaged loss coefficient increased according to the increase of free-stream turbulence intensity due to increased value of the mass averaged total pressure loss coefficient which was higher than the decreased value of the mass averaged secondary flow loss coefficient. The loss coefficient distribution was changed suddenly at a free-stream turbulence intensity of 10% while the loss coefficient distribution was rarely changed at a lower free-stream turbulence intensity of 5%.

  • PDF

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

NUMERICAL ANALYSIS OF PRESSURE PERTURBATION OF DELTA WING VORTEX FLOW AT A HIGH ANGLE OF ATTACK (고 받음각 ONERA 70도 삼각날개 와류 유동의 압력 섭동 분석)

  • Son, M.S.;Sa, J.H.;Park, S.H.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Delayed Detached-Eddy Simulation was conducted to investigate surface pressure coefficient distribution and surface pressure fluctuation over an ONERA 70-degree delta wing at a high angle of attack. Time-averaged surface pressure distribution is directly affected by the primary vortices, whereas the pressure fluctuation is influenced by the unsteady fluctuating boundary layer over the surface. And pressure coefficient, velocity, pressure fluctuation, and turbulent kinetic energy were analyzed along the vortex core in order to investigate the process of vortex breakdown. Consequently, strong pressure fluctuations were found where the vortex breakdown was occurred at x~620 mm. The turbulent kinetic energy abruptly increased and followed after the vortex breakdown.

The improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by Cylinder (실린더 후류를 이용한 2차원 디퓨저 성능개선)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.614-618
    • /
    • 2014
  • 본 연구에서는 디퓨저의 압력회복을 높이기 위해 디퓨저 입구에 실린더를 설치하여 후류가 압력회복에 어떤 영향을 미치는지 알아보았다. 2D-Incomp-2.1-P 해석자를 이용하여 속도, 압력에 따른 유동가시화를 통해 내부유동을 분석하였고, 압력회복계수를 비교하여 디퓨저 입구에 설치된 실린더의 후류가 디퓨저 성능에 어떤 영향을 주는지 비교하였다. 그결과 실린더를 설치하였을 때 확대부에서의 박리영역이 더 작아졌고 압력회복계수가 더 높아졌다.

  • PDF

An Analysis for Turbulent Hybrid Bearings with Fluid Inertia and Swirl Injection Effects (유체의 관성력과 스월의 영향을 고려한 난류 하이브리드 베어링의 해석)

  • 이용복;김창호;최동훈
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.85-91
    • /
    • 1996
  • An analysis for turbulent hybrid beatings with fluid inertia and swirl injection effect was derived for studying static characteristics of swirl-controlled hybrid journal. The swirl-controlled hybrid journal beating is considered to have more freedom in stability control in high speed rotating machinery. Current analysis is compared with experimental results with 3-recess hydrostatic journal bearing. The analysis revealed that the fluid momentum exchange at orifice discharge could produce pressure rise inside the recess region which can control the shear flow induced by journal rotation. The analysis also shows that the swirl-controlled hybrid journal beating has a capability of controlling load carrying capacity and stability by manipulating supply pressure and injection angle.

Effect of Ignition-Energy Characteristics on the Ignition and the Combustion of a Premixed Gas (점화에너지 특성이 예혼합기의 착화와 연소에 미치는 영향)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1996
  • In this paper, we study effect of the factors, participating in the combustion as the initial conditions, such as the flow characteristics of the mixture and the initial temperature, pressure and equivalence ratio in the chamber on the ignitability of the mixture, the combustion duration and the maximum combustion-pressure. The experiment was performed in a constant-volume combustion chamber, with turbulent flow inside, equivalent to the actual engine at TDC. The present experiment utilizes three devices which differ from each other in the distribution and the magnitude of discharge energy.

  • PDF