• 제목/요약/키워드: Pressure transfer ratio

검색결과 346건 처리시간 0.031초

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과 (Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall)

  • 안수환;이명성;배성택
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구 (A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load)

  • 최승일;지명국;이대철;정효민;정한식
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석 (Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

공작기계 절삭유 냉각용 오일쿨러 설계 자동화 (Oil Cooler Design Automation on the Cooling of Machine Tool Cutting Oil)

  • 권혁홍
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.89-99
    • /
    • 1999
  • The automatic design of shell & tube type oil cooler can be used in real industrial environments. Since the automatic design system is intended to be used in small companies, it is designed to be operated well under environments of CAD package in the personal computer. It has adopted GUI in design system, and has employed DCl language. Design parameters to be considered in the design stage of shell and tube type oil cooler are type of oil cooler, outer diameter, thickness, length of tube, tube arrangement, tube pitch, flow rate, inlet and outlet temperature, physical properties, premissive pressure loss on both sides, type of baffle plate, baffle plate cutting ratio, clearance between baffle plate outer diameter and shell inner diameter and clearance between baffle plate holes. As a result, the automatic design system of shell & tube type oil cooler is constructed by the environment of CAD software using LISP. We have built database of design data for various kinds of shell & tube type oil coolers. The automatic design system have been assessed and compared with existing specification of design. Good agreement with Handbook of heat exchanger and design dta of real industrial environments has been found.

  • PDF

NO Reduction and High Efficiency Combustion by Externally Oscillated Staging Burner

  • Lim, Mun-Sup;Yang, Won;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.158-163
    • /
    • 2009
  • It is difficult for a burner to achieve an increase in combustibility and a reduction of NOx emission, simultaneously. The reason is because thermal NOx could be reduced at low temperature, while the combustibility should be decreased. To solve this problem, an externally oscillated staging burner was developed, and experiment was conducted according to effective parameters. The combustibility could be improved through the accelerated transfer of heat, mass and momentum obtained by external oscillation. Also, NO is reduced by the decrease of residence time of burning gas in the local highest-temperature spot, which is decreased by the external oscillation and fuel staging. Experiments on variables were conducted to determine the reference flame, and the flame generating the lowest NO concentration was selected. The conditions of reference flame were oscillation frequency 250 Hz, sound pressure 1 VPP, and air ratio 1.1, and NO and CO concentrations were 1ppm and 20 ppm, respectively.

이종 소재 접합체의 흡습 질량 확산 해석 (A Study of Hygroscopic Moisture Diffusion Analysis in Multimaterial System)

  • 김용연
    • 마이크로전자및패키징학회지
    • /
    • 제18권2호
    • /
    • pp.11-15
    • /
    • 2011
  • 폴리머의 흡습문제를 해석하기 위해 흡습확산 지배방정식과 열전달 방정식을 고찰하였다. 두 방정식의 동일 한 형식의 편미분방정식이기 때문에 상사의 법칙을 적용하여 물체가 등온 하중조건을 받고 있을 때 단일 매질의 확산문 제를 상용유한요소코드에 의해 수치적으로 해석하였다. 여러 소재로 구성된 매체는 흡습질량이 접착면에서 불연속 특성 을 갖기 때문에 확산해석에 상사법칙을 직접적으로 적용할 수 없으나 흡습관련 소재 특성이 온도만의 함수인 소재로 구 성된 매체에서 흡습확산 문제는 접착면에서 연속성을 가지고 있는 압력비를 고려함으로써 해석하였다. 실리콘-비전도성 수지 접합체의 측정된 흡습 변화량은 접합면을 경계조건으로 하고 단일 매체에 대한 해석 결과와 매우 근접한 결과를 보였으나, 복합체로 해석한 결과는 흡습시간이 경과할수록 점점 큰 오차가 발생하였다.

지반응답해석기법의 차이에 의한 지반응답 분산도 평가 (Influence of Analysis Models on Variation of Ground Response during Earthquake)

  • 김성렬;최재순;김수일;박대영;박성용;김기풍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

자기장이 인가된 충돌제트의 유동 특성에 관한 수치적 연구 (A Numerical Study on the Impinging Jet Flow Characteristics in the Presence of Applied Magnetic Fields)

  • 이현구;윤현식;홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.537-544
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow in the confined jet flow in the presence of applied magnetic field. Numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow fields become the steady state if the Stuart number is greater than a critical value. Thus the pressure coefficients at the stagnation point also vary as a function of Stuart number.