• 제목/요약/키워드: Pressure sintering process

검색결과 160건 처리시간 0.022초

방전플라즈마 소결 공정 적용 전이금속 카바이드 서멧의 소결 및 기계적 특성 (Sintering Behavior and Mechanical Property of Transition Metal Carbide-Based Cermets by Spark Plasma Sintering)

  • 이정한;박현국;홍성길
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.44-50
    • /
    • 2022
  • Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 ℃ (60 ℃min) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.

약 산화성 분위기 중에서의 과산화성 2산화 우라늄의 소결에 관한 연구 (The Sintering Behavior of the Hyperstoichiometric Uranium Dioxide in the Oxidative Atmosphere)

  • Jang Keu Han;Won Ku Park;Han Su Kim
    • Nuclear Engineering and Technology
    • /
    • 제15권3호
    • /
    • pp.197-206
    • /
    • 1983
  • 핵연료로서 사용 가능한 O/U비 범위인 2.005~2.01의 이산화 우라늄의 소결체를 환원 공정을 거치지 않고 직접 $CO_2$/CO 혼합깨스 분위기에서 소결하였다. O/U비 변화가 소결속도에 미치는 영향을 소결후기에서 조사하였으며, 일정 O/U비에 있어서의 소결 온도-시간-밀도-입도 간의 관계를 나타내는 소결 다이아그램을 결정하였다. 그결과 소결분위기중의 산소분압만을 조절하여, 이론밀도의 95%이상, 평균입도 7$\mu\textrm{m}$ 이상의 소결체를 1050$^{\circ}$~120$0^{\circ}C$의 저온에서 쉽게 얻을 수 있었다. 소결후기의 결정입도의 성장속도는 D=(Kt)$^{1}$4/의 실험식에 따르고, 결정립성장에 대한 활성화 에너지는 O/U비가 2,005, 2.01, 2.10일 때 각각 75, 64, 62Kcal/mol이었다. O/U비가 변화해도 활성화 에너지는 크게 변하지 않았지만, 소결은 산소 분압의 증가에 따라 크게 증가하였다.

  • PDF

Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구 (Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders)

  • 장광주;김경태;양상선;김용진;박용호
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

온간 성형법으로 제작한 오스테나이트계 스테인레스강의 소결 거동에 관한 연구 (A Study on Densification Behvior of Austenitic Stainless Steel Powder Compacts Processed by Warm Compaction)

  • 임태환
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.42-49
    • /
    • 2000
  • Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.

  • PDF

High $T_c$ Superconducting Thick Film for Applications

  • Soh, Deawha;Park, Seongbeom;Wang, Jue;Li, Fenghua;Fan, Zhanguo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.12-15
    • /
    • 2003
  • The YBaCuO thick film was deposited by the electrophoresis in the solution with different dimension particles. The morphology of the films deposited from different particles size was compared. The powder made by sol-gel method has the submicron particles, which deposit the most smooth film, and without microcracks after sintering. After sintering of the deposited film, the zone-melting process was carried out in low oxygen partial pressure (100 Pa) and Ag was used as substrate. And the zone-melted YBaCuO was studied by XRD.

  • PDF

$Ce-TZP/Al_2O_3$ 세라믹 복합재료의 소결과 미세구조 (Sintering and Microstructure of $Ce-TZP/Al_2O_3$ Ceramic Composite)

  • 박홍채;홍상희;이윤복;오기동
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.703-714
    • /
    • 1994
  • Sintering and microstructure of Ce-TZP/Al2O3 composite with $\alpha$-Al2O3 matrix containing dispersed 5~50 vol% ZrO2 were discussed. Sintered density was increased with elevating forming pressure in range of 6~300 MPa and about >99.2% of theoretical density was obtained at 1$600^{\circ}C$ for 2h in case of 300 MPa of 6~300 MPa uniaxially cold-pressed compacts containing 20 vol% ZrO2. All kinds of different batch composition exhibited nearly the same shrinkage behaviour with end-point shrinkage between 20 and 24%, and had the maximum shrinkage rate (0.41~0.54%/min) around 140$0^{\circ}C$. Grain growth was occurred faster in $\alpha$-Al2O3 than in {{{{ gamma }}-Al2O3 starting matrix during sintering at 1$600^{\circ}C$. Bimodal pore size distribution of interaglomerate pores with size of 0.03~0.2 ${\mu}{\textrm}{m}$ and of interaglomerate pores with size of around 60 ${\mu}{\textrm}{m}$ was obtained in Ce-TZP/$\alpha$-Al2O3 composite sintered at 130$0^{\circ}C$. But unimodal pore size distribution with around 0.1 ${\mu}{\textrm}{m}$ was observed in Ce-TZP/{{{{ gamma }}-Al2O3 composite sintered at the same temperature. Microcracks were occurred due to the tlongrightarrowm transformation of ZrO2 on cooling process.

  • PDF

표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성 (Mechanical Properties of Surface Densified PM Gears)

  • 김기정;김기범;이두환;박종관;정동국
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.

기계적 합금 및 펄스전류 활성 소결에 의한 나노구조 TiCo 합금의 제조 (Mechanical Synthesis and Fabrication of Nanostructured TiCo Alloy by Pulsed Current Activated Sintering)

  • 손인진;송하영;조성욱;김원백;서창열
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.39-44
    • /
    • 2012
  • Nanopowders of TiCo were synthesized from Ti and Co by high energy ball milling. Highly dense nanostructured TiCo compounds were consolidated at low temperature by pulsed current activated sintering within 3 minutes from the mechanical synthesis of the powders (TiCo) and horizontal milled Ti+Co powders under 100 Mpa pressure. This process allows very quick densification to near theoretical density and prohibits grain growth in nanostructured materials. The grain sizes of the TiCo compounds were calculated. Finally, the average hardness values of the nanostructured TiCo compounds were investigated.

Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys

  • Sayed, Mohamed A.;Dawood, Osama M.;Elsayed, Ayman H.;Daoush, Walid R.
    • Advances in materials Research
    • /
    • 제6권1호
    • /
    • pp.79-91
    • /
    • 2017
  • In the present work, a design of experiment (DOE) technique using Taguchi method, has been applied to optimize the properties of ODS tungsten heavy alloys(WHAs). In this work Taguchi method involves nine experiments groups for four processing parameters (compaction pressure, sintering temperature, binding material type, and oxide type) with three levels was implemented. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to obtain the optimal process parameter levels and to analyze the effect of these parameters on density, electrical conductivity, hardness and compressive strength values. The results showed that all the chosen factors have significant effects on all properties of ODS tungsten heavy alloys samples. The density, electrical conductivity and hardness increases with the increase in sintering temperature. The analysis of the verification experiments for the physical properties (density and Electrical conductivity) has shown that Taguchi parameter design can successfully verify the optimal parameters, where the difference between the predicted and the verified values of relative density and electrical conductivity is about 1.01% and 1.15% respectively.

Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동 (Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density)

  • 정우영;옥진욱;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.