• Title/Summary/Keyword: Pressure rise

Search Result 983, Processing Time 0.026 seconds

초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구 (The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings)

  • 박영기;홍기배;유홍선
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.85-91
    • /
    • 2018
  • 최근 초고층 건축물에서 화재로 인해 많은 인명피해가 발생하고 있다. 특히, 화재 발생시 생성되는 유독성 가스 및 연기로 인해 많은 사망자가 발생하고 있다. 이러한 인명피해를 줄이기 위한 방안으로 제연시스템이 도입되어 있다. 제연시스템은 초고층 건축물에서 연기의 확산을 방지하고 재실자의 안전한 피난을 도와주는 장치이다. 또한, 엘리베이터를 이용한 피난은 초고층 건축물에서 필수적인 피난 방법으로 여겨진다. 하지만, 엘리베이터 구동시 생성되는 강력한 압력장 및 유동변화로 인해 제연시스템의 성능확보에 영향을 미친다. 따라서, 본 연구에서는 성능설계위주의 샌드위치 가압방식이 적용된 초고층 건축물에서 엘리베이터 구동에 따른 제연성능 확보에 미치는 영향을 실험 및 수치해석 연구로 수행하였다. 실제 초고층 건축물에서 발생되는 창문, 방화문 그리고 엘리베이터의 누설면적은 화재안전기준 및 면적비를 이용하여 산출하였다. 실제 엘리베이터 속도 7 m/s~17 m/s에 해당하는 20 m/s~100 m/s로 동역학적 상사를 통해 엘리베이터 속도를 변경하였다. 그 결과 엘리베이터 속도가 빠르면 빠를수록 부속실과 화재실 간 차압이 크게 발생하였으며 관계식은 ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735로 산출되었다. 본 연구 결과는 초고층 건축물에서 엘리베이터 구동을 고려한 제연시스템 설계 자료로 활용이 가능하다.

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

정용연소기에 있어서 어유의 연소특성 (Combustion Characteristics of Fish Oil in a Constant Volume Combustion Bomb)

  • 서정주
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.184-190
    • /
    • 1992
  • The combustion characteristics, ignition delay, p-t, dp/dt, Q-t of diesel oil and fish oil blended diesel oils was investigated according to pressure and temperature in a constant volume combustion bomb. The results are as follows: 1) The influence of temperature and pressure on the ignition delay was almost constant in high temperature, regardless of the blending rates, and the ignition delay was shortest in the 60% blend. 2) The maximum pressure was high in order of with pure diesel oil, with the 20% blend and the 60% blend. 3) The rate of pressure rise was high in order of with pure diesel oil, with the 20% blend and the 60% blend. The rate of maximum pressure rise was significantly higher with pure diesel oil than with two blends. 4) The amount of accumulative heat release was large in order of with pure diesel oil, with the 20% blend and the 60% blend.

  • PDF

폴리부틸렌 이중관에서의 워터 햄머 현상에 관한 연구 (The Study of Water Hammer in Polybutylene Double Piping System)

  • 김용봉;양찬모;이용화
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.511-516
    • /
    • 2005
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene double piping system with header. Experiments were conducted under the following conditions: initial pressure $1{\sim}5$ bar, flow velocity $0.5{\sim}3.0$ m/s and water temperature $25^{\circ}C$.

  • PDF

Wind pressure characteristics for a double tower high-rise structure in a group of buildings

  • Tse, K.T.;Wang, D.Y.;Zhou, Y.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.491-515
    • /
    • 2013
  • Wind pressure characteristics on a double tower high-rise structure, which is disturbed by surrounding buildings, were investigated using large eddy simulation (LES) and 1:300 scale wind tunnel experiments. The computational simulation technique and wind tunnel experimental technique were described in detail initially. Comparisons of computational results with the experimental data have subsequently been carried out to validate the reliability of LES. Comparisons have been performed in detail for the mean and fluctuating pressure coefficients. Detailed explanations of each comparison were given in the paper. To study further on the pressure coefficients on the building surfaces, parametric studies on shape coefficient and spatial correlation were performed and investigated. The numerical and experimental results presented in this paper advance understanding on wind field around buildings and the application of LES and wind tunnel tests.

폴리부틸렌 이중관에서의 수격 현상에 관한 연구 (The Study of Water Hammer in Polybutylene Double Piping System)

  • 이용환
    • 설비공학논문집
    • /
    • 제21권7호
    • /
    • pp.380-385
    • /
    • 2009
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene double piping system with header. Experiments were conducted under the following conditions: initial pressure $0.1{\sim}0.5$ MFa, flow velocity $0.5{\sim}3.0$ m/s and water temperature $25^{\circ}C$.

HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석 (An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine)

  • 이건식;김진구;변창희;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.

원형 밀폐 및 개방형 돔 지붕의 풍압 스펙트럼 (Wind Pressure Spectra for Circular Closed and Open Dome Roofs)

  • 천동진;김용철;이종호;윤성원
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.69-76
    • /
    • 2020
  • Wind tunnel tests were conducted to analyze the wind fluctuating pressures on a circular closed and open dome roof with a low span rise. Two dome models with various geometric parameters (height/span ratios and open ratios) were used for fixed span rise ratio dome and wind pressure spectrum were analyzed. The applicability was examined in comparison with the spectral model proposed in the previous studies. The analysis results show that the wind pressure spectrum of open dome roof tends to increase power in the high frequency range and the second peak is found in the area different from the closed dome roof. In addition, according to the comparison analysis with the previous proposed spectral model, it was found that it is not applicable to the closed and open dome roofs with low rise ratio due to the different peak frequencies.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • 제13권5호
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

Transition Analysis of Friction Factor According to Pumping Pressure in Pumping Test Using High Strength Concrete for High-rise Buildings

  • Kwon, Hae-Won;Kim, Young-Su
    • 한국건축시공학회지
    • /
    • 제13권4호
    • /
    • pp.400-406
    • /
    • 2013
  • In high-rise buildings, high-strength concrete is widely used to reduce the section of structure members under axial load. Also, the price increase of materials is very important item in the high-rise buildings. Especially, concrete used high-pressure pump due to consecutive structural assembly. Unlike slump type of ordinary concrete, high strength concrete has different properties of concrete pumping due to viscosity. However, there have been no Korean studies on the pumping properties of high strength concrete. Therefore, this paper measures the friction factor of high strength concrete with changes in the pressure of concrete pumping. We analyzed the trends of the friction factor based on changes in the pressure of concrete pumping, and then calculated the quantity of concrete deposited for each specified concrete strength and location of placement. After comparing these results with the quantity of concrete deposited measured in field, we evaluated the pumping properties of high strength concrete. Through the tests and the review, we attempt to suggest some basic information for the In-Situ application of high strength concrete.