• Title/Summary/Keyword: Pressure resistance

Search Result 2,198, Processing Time 0.035 seconds

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

The effect of the process parameters on the electrical properties of Ni/Cr/Al/Cu alloy thin film (공정변수에 의한 Ni/Cr/Al/Cu계 박막의 전기적 특성)

  • 이붕주;박상무;박구범;박종관;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.725-728
    • /
    • 2001
  • We have fabricated thin films using the DC/RF magnetron sputtering of 74wt%Ni-l8wt%Cr-4wt%Al-4wt%Cu alloy target and studied the effect of the process parameters on the electrical properties for low TCR(Temperature Coefficient of Resistance) films. In sputtering process, pressure, power and substrate temperature, are varied as controllable parameter. The films are annealed to 400$^{\circ}C$ in air and nitrogen atmosphere. The sheet resistance, TCR of the films increases with increasing annealing temperature. It abruptly increased as annealing temperature increased over 300$^{\circ}C$ in air atmosphere. From XRD, it is found that these results are due to the existence of NiO on film surface formed by annealing. As a results of them, TCR can be controlled by variation of sputter process parameter and annealing of thin film.

  • PDF

A Study on the Surface Harding of Aluminum Alloy - TIG Overlay Hardening of Al 5083- (알루미늄합금의 표면강화에 관한 연구 - Al 5083에 대한 TIG overlay 경화 -)

  • 이영호;강원석;이규천
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.135-148
    • /
    • 1997
  • It was attempted to improve wear resistance and durability under the load surface pressure that make a formation of the thick (mm-order) hard-surfacing layer for aluminum alloy of 5083. The thick hard layers were formed on the surface of 5083 by TIG overlay method. Al-(25.4, 33.6, 45.7 mass%) Cu filler metals which were newly developed were overlaid on two base metals forming the one bead, one layer and two layers. The investigation was made on the characteristics of hardening and wear resistance in relation to the microstructure of overlaid layers with selection of optimum overlaying condition.

  • PDF

Pervaporation Separation of Water/Ethanol Mixtures through PBMA/anionic PAA IPN Membrane

  • Jin, Young-Sub;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.86-87
    • /
    • 1996
  • IPN (Interpenetrating Polymer Network) is a mixture of two or more crosslinked polymers with physically interlocked network structures between the component polymers. IPN can be classified as an alloy of thermosets and has the characteristics of thermosets such as the thermal resistance and chemical resistance and also has the characteristics of polymer alloys with enhanced impact resistance and amphoteric properties. The physical interlocking during the synthesis restricts the phase separation of the component polymer with chemical pinning process, thus the control of morphology is possible through variations of the reaction temperature and pressure, catalyst concentration and crosslinking agent concentration. Finely dispersed domain structure can be obtained through IPN synthesis of polymer components with gross immiscibility. In membrane applications, particularly for the separation of liquid mixtures, crosslinked polymer component with specific affinity to the permeate is needed. With the presence of the permeant-inert polymer component, the mechanical strength and the selectivity of the membranes are enhanced by restricting the swelling of the transporting polymer component networks.

  • PDF

Change of Electrical Resistivity of PdH film as a Function of Film Thickness (수소흡수시 Pd 박막 시료의 두께 변화에 따른 전기저항의 변화)

  • Cho, Young-sin
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.3
    • /
    • pp.171-175
    • /
    • 1999
  • Pd films($180{\sim}670{\AA}$ thick) were made by thermal evaporation. Electrical resistance of the films was measured during hydrogen absorption-desorption process at room temperature. Resistance changes as a function of hydrogen pressure in thin films of the PdH system show a strong dependence on film thickness. $({\Delta}R_{\infty}/R_0)_{{\beta}min}$ for a $\670{\AA}$ film is 0.61. For a $\180{\AA}$ film, this is 0.34. Resistance change also depends on sample preparation condition.

  • PDF

Bipolar Resistance Switching Characteristics of $NiO_{1+x}$ films with Adding Higher-Valence Impurities

  • Kim, Jong-Gi;Son, Hyeon-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.370-370
    • /
    • 2010
  • The effects of adding higher-valence impurities on the bipolar resistive switching characteristics of Pt/$NiO_{1+x}$/TiN MIM stacks and physical properties were investigated. $NiO_{1+x}$ films with 14% W deposited at 20% oxygen partial pressure exhibited the bipolar resistance switching characteristics in Pt/$NiO_{1+x}$/TiN MIM stacks, while $NiO_{1+x}$ films with 8.2% W show unipolar resistance switching behavior. The relationship of W-doping and the crystallinity was studied by X-ray diffraction. The metallic Ni contents and $WO_x$ binding states with W amount was investigated by XPS. Our result showed that the metallic Ni, $WO_x$ binding states, and crystallinity in $NiO_{1+x}$ played an important role on the bipolar resistive switching.

  • PDF

Study on Pt thin film property of Resistance Temperature Detect (측온 저항체의 Pt 박막 특성 연구)

  • Park, Jung-Ho;Ji, Mi-Jung;Choi, Byung-Heon;Lee, Jung-Min;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.29-29
    • /
    • 2008
  • Platinum Thin films were deposited on $Al_2O_3$ by Rf magnetic Sputtering. The physical and electrical characteristics of these films were analyzed under various deposition conditions(Ar gas pressure, input power, substrate temperature.) and annealing condition. The deposition rate was increased with increasing the input power but not increased linear. In the other factor, The Pt thin films property was associated with resistance. so lower resistance had more and more good Pt thin films condition. For the purpose of this study, we will get the best Pt thin film characteristics.

  • PDF

A Stochastic Study on Fatigue Crack Propagation and Retardation Behavior of Pressure Vessel Steel (압력용기용강의 피로균열전파 및 지연거동에 관한 확률통계적 연구)

  • 김선진;남기우;김부안
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The purpose of the present study is to investigate the statistical characteristics of m and C in the fatigue crack propagation law, da/dN=C(.DELTA.K)/sup m/ and to studies on the randomness of fatigue crack propagation and retardation behavior. Fatigue tests were perfomed on 32 CT specimens of SPV50 steel under the same one condition. First, the value of m and C were determined for each specimen, and all the data were analyzed statistically. second, the material's resistance to fatigue crack propagation is modeled as a stchastic process, which varies randomly along the crack path. The statistical analysis of the material resistance is performed with the data obtained by constant load controlled tests. Finally, retardation behavior was examined experimentally by using a CT specimen, and a retardation parameters were analyzed statistically.

  • PDF

Study on Cold/Oil Atmosphere Resistance Property of Face Seal Rubber for Track Layer

  • Shin, Jae Won
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • A face seal comprising a metal ring and acrylonitrile butadiene rubber (NBR) was installed in the driving part and suspension unit. The seal serves as a bearing and simultaneously prevents entry of foreign matter from external environment as well as internal oil leakage. Subsequently, the rubber-rod ring generates axial pressure owing to rubber elasticity (hardness), performs static sealing function between housing details and outer diameter of seal, and transmits rotational torque to the rotating support ring. In order to improve the durability of NBR, which performs the above tasks, and to effectively use it in tracked-vehicle applications at extreme temperatures, this study reports a mixing design approach to enhance cold and oil resistances of NBR.

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.