• Title/Summary/Keyword: Pressure resistance

Search Result 2,182, Processing Time 0.029 seconds

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

Fundamentals of Contact Lens Movement (콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2008
  • Purpose: This review article was written to investigate what kind of forces are acting on the contact lens fitted on the cornea and its subsequent motion. Methods: A capillary action-induced force develops in the tear layer between the lens and cornea, which leads to the restoring force due to difference in layer thickness according to lens rotation. The characteristics of the lens movement can be determined by the various factors such as friction between eyelid and lens, acceleration force based on blinking and the restoring force incorporated with the viscous damping force. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped motion of lenses. The model predicts the time dependence of lenses during and after the blink varying the BC, blink period and eyelid pressure. Results: It was found that both the blink period and lid pressure increases the movement increases because of the enhanced lid friction. As the BC increases the viscous damping reduces due to the lacrimal layer's increase which resulted in the enhanced lens motion. After blink the lens illustrates the damped oscillation because of the restoring force by the increased lacrimal layer thickness and reduced viscous resistance. The time for the lens to return to the equilibrium shortens as the BC increase because of the resistance reduction. Conclusions: The movement of the contact lens is governed by the characteristics of the lacrimal layer between the lens and cornea as well as the lid blink.

  • PDF

Manufacture of Portable Inflatable Kayak Using Ultra High Pressure Drop Stitch (초고압 공간지를 이용한 포터블 인플레터블 카약 제작)

  • Park, Chan-Hong;Park, Byeong-Ho;Park, Jong-Dae;Seong, Hyeon-Kyeong;Lim, Lee-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.551-557
    • /
    • 2013
  • In this paper, we manufactured portable inflatable kayak using ultra high pressure drop stitch. by improving inflatable kayaks' performance with a design using the extra-high-voltage special space paper, they were manufactured to go near to performance of hard shell kayaks. The kayaks were manufactured having all merits of the performance of hard shell kayaks and functionality and portability of the inflatable kayaks, and through performance evaluation of test products, the performance was compared with previous hard shell kayaks. About 6 knot of target speed in the verification result of resistance performance, the developed kayak was more excellent than the HOBIE-KONA kayak by 12.33%. In case of same displacement in a result of inclination test, the centroid of the developed kayak was less distributed by 22.7% than the HOBIE-KONA kayak, based on the bottoms of the ships. This makes the difference for righting arm (GZ) lessened to some degree because the developed kayak is lower than the HOBIE-KONA kayak in the centroid. In the dynamic stability of ship bodies, the HOBIE-KONA kayak showed a little excellent performance. However, in rudder force and resistance factor, the developed kayak was more outstanding than the HOBIE-KONA kayak.

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.

Failure in the COG Joint Using Non-Conductive Adhesive and Polymer Bumps (감광성 고분자 범프와 NCA (Non-Conductive Adhesive)를 이용한 COG 접합에서의 불량)

  • Ahn, Kyeong-Soo;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • We studied a bonding at low temperature using polymer bump and Non-Conductive Adhesive (NCA), and studied the reliability of the polymer bump/Al pad joints. The polymer bumps were formed on oxidized Si substrates by photolithography process, and the thin film metals were formed on the polymer bumps using DC magnetron sputtering. The substrate used was AL metallized glass. The polymer bump and Al metallized glass substrates were joined together at $80^{\circ}C$ under various pressure. Two NCAs were applied during joining. Thermal cycling test ($0^{\circ}C-55^{\circ}C$, cycle/30 min) was carried out up to 2000 cycles to evaluate the reliability of the joints. The bondability was evaluated by measuring the contact resistance of the joints through the four point probe method, and the joints were observed by Scanning Electron Microscope (SEM). The contact resistance of the joints was $70-90m{\Omega}$ before the reliability test. The joints of the polymer bump/Al pad were damaged by NCA filler particles under pressure above 200 MPa. After reliability test, some joints were electrically failed since thinner metal layers deposited at the edge of bumps were disconnected.

  • PDF

Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting (철근콘크리트 패널의 FRP 보강에 의한 방폭 성능 향상에 관한 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Kim, Sung-Bae;Choi, Jong-Kwon;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Recently, FRP usage for strengthening RC structures in civil engineering has been increasing. Especially, the use of FRP to strengthen structures against blast loading is growing rapidly. To estimate FRP retrofitting effect under blast loading, blast tests with nine $1,000{\times}1,000{\times}150\;mm$ RC panel specimens, which were retrofitted with carbon fiber reinforced polymer (CFRP), Polyurea, CFRP with Poly-urea and basalt fiber reinforced polymer (BFRP) have been carried out. The applied blast load was generated by the detonation of 15.88 kg ANFO explosive charge at 1.5 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included central deflection and strains at steel, concrete, and FRP surfaces. The failure mode of each specimen was observed and compared with a control specimen. From the test results, the blast resistance of each retrofit material was determined. The test results of each retrofit material will provide the basic information for preliminary selection of retrofit material to achieve the target retrofit performance and protection level.

Analysis of braking characteristics of electric multiple unit for train control system (열차제어시스템을 위한 전동차 제동특성 분석)

  • Choi, Don Bum;Oh, Sehchan;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.887-895
    • /
    • 2018
  • This paper presents a braking model that can be used to design the safety distance of a train control system and a train braking system to increase the volume of traffic. For the braking model, a train set (electric multiple unit composed 6 cars) was tested. The factors that can affect the braking characteristics include the friction coefficient, braking pressure, and regenerative braking. The braking pressure was classified into service and emergency braking and reflected the characteristics of the vehicle. The external force acting on the running railway car was tested in accordance with KS R 9217, and the running resistance of the train is presented in the form of a polynomial. The dynamic behavior of the train running on a straight flat line was simulated using UM 8.3. The results were validated with experimental data, and the results were reasonable. With the validated model, a stopping distance was determined according to the initial braking speed and compared with the deceleration braking model. In addition, a safety distance for the train control system could be changed according to the frictional coefficient limits. These results are expected to be useful for analyzing the dynamic behavior of trains, and for analyzing various railway environments and improving the braking performance.

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.