• Title/Summary/Keyword: Pressure rate

Search Result 8,587, Processing Time 0.032 seconds

A Study on Injection and Combustion of D.I. Diesel Engine with Electronic-hydraulic Fuel Injection System (전자유압식 분사계를 갖는 D.I. 디젤기관의 분사 및 연소에 관한 연구)

  • Kim, Hyun-Gu;Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.83-97
    • /
    • 1997
  • Diesel engine is widely used for ship and industry source of power because of its high thermal efficiency and reliability and durability. However it lead to air pollution due to exhaust gas, and it is important to develop diesel engine of lower air-pollution to decrease the hazardous exhaust gas emissions. As one of the ways, the study for practically using the high pressure of fuel injection and variable injection timing system is being processing. The high pressure injection, which is said to be an effective means for reducing both NOx and particulate emissions, and great improvements in combustion characteristics have been reported by many researchers. In this study, electronic-hydraulic fuel injection system and hydraulic fuel injector system have been applied to the D.I. test engine for high pressure injection and variable injection timing. The injection pressure and injection rate depending upon accumulator pressure were measured with strain gage and Bosch injection rate measuring system before fitting the system into test engine, and analyzed the characteristics of the injection system. The combustion characteristics with this injection system has been analyzed with data concerning heat release rate, pressure rising rate, ignition point, ignition delay and maximum pressure value.

  • PDF

Machine-Learning Based Prediction of Rate of Injection in High-Pressure Injector (기계학습 기법을 적용한 고압 인젝터의 분사율 예측)

  • Lin Yun;Jiho Park;Hyung Sub Sim
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.147-154
    • /
    • 2024
  • This study explores the rate of injection (ROI) and injection quantities of a solenoid-type high-pressure injector under varying conditions by integrating experimental methods with machine learning (ML) techniques. Experimental data for fuel injection were obtained using a Zeuch-based HDA Moehwald injection rate measurement system, which served as the foundation for developing a machine learning model. An artificial neural network (ANN) was employed to predict the ROI, ensuring accurate representation of injection behaviors and patterns. The present study examines the impact of ambient conditions, including chamber temperature, chamber pressure, and injection pressure, on the transient profiles of the ROI, quasi-steady ROI, and injection duration. Results indicate that increasing the injection pressure significantly increases ROI, with chamber pressure affecting its initial rising peak. However, the chamber temperature effect on ROI is minimal. The trained ANN model, incorporating three input conditions, accurately reflected experimental measurements and demonstrated expected trends and patterns. This model facilitates the prediction of various ROI profiles without the need for additional experiments, significantly reducing the cost and time required for developing injection control systems in next-generation aero-engine combustors.

The Depressive Effect of Hwa-acupuncture Treatment in Hypertension Patients (고혈압 환자에서 화침법(和針法)의 혈압강하 효과)

  • Han, Chang-Hyun;Park, Kyung-Ho;Shin, Mi-Suk;Shin, Seon-Hwa;Choi, Sun-Mi
    • Journal of Acupuncture Research
    • /
    • v.23 no.6
    • /
    • pp.165-176
    • /
    • 2006
  • Objectives : Aim of this study was to investigate the antihypertensive effect of Korean Hwa-Acupuncture in hypertensive patients. Methods: We measured the blood pressure of 14 patients who were admitted in the Oriental Medical Clinic of Balance & Harmony Korean Acupuncture Association from 25th March 2006 to 21th July 2006. Eligible participants had systolic blood pressure ${\geq}120mmHg$ diastolic blood $pressure{\geq}80mmHg$. Blood pressure and pulse rate measurements were after the patient had been bed rest for at least 30 min. 10 times of Hwa-Acupuncture treatment over 3 weeks period were performed in the patiants. To evaluate the effect of the Hwa-Acupuncture, the blood pressure, pulse rate were measured 2 times before and after each acupuncture treatment for total of 10 times. Results : After 3 weeks, there were significant decreased in the systolic blood pressure(P<0.0297) and significant decreased in diastolic blood pressure(P<0.0223) treated by Hwa-Acupuncture 10 times but pulse rate was failed to decreased. The effects of Hwa-Acupuncture by measuring time on blood pressure were as follows : systolic blood pressure were deceased significantly from 1st to 10th visit (P<0.0207) but diastolic blood pressure and pulse rate was not decreased significantly. Conclusion : The results suggest that Hwa-Acupuncture is effective in decreasing the systolic blood pressure.

  • PDF

Gogoon acupuncture for hypertension (고혈압 환자에서 곡운침법의 혈압강하 효과)

  • Han, Chang-Hyun;Song, Ttae-Won;Shin, Mi-Suk;Shin, Seon-Hwa;Choi, Sun-Mi
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.27-41
    • /
    • 2007
  • Objectives : The aim of this study was to investigate the antihypertensive effect of Korean Gogoon Acupuncture in hypertensive patients. Methods : We measured the blood pressure of 17 patients who were admitted in the Oriental Medical Clinic of Gogoon Institute from 14th April 2006 to 29th August 2006. Eligible participants had systolic blood pressure ${\geq}120$ mmHg or diastolic blood $pressure{\geq}80$ mmHg. Blood pressure and pulse rate measurements were after the patient had been in bed rest for at least 30 min. Six sessions of Gogoon Acupuncture treatment over three weeks were performed in the patients. Blood pressure and pulse rate were measured twice before and after each acupuncture treatment. Results : After 3 weeks, there were significant decreases in systolic blood pressure(p=0.0028), diastolic blood pressure (p=0.0111) and pulse rate (p=0.0150). The effects of Gogoon Acupuncture by measuring time on blood pressure were as follows : In a systolic blood pressure (p<.0001) and diastolic blood pressure (p=0.0028) was gradually deceased significantly from 1st to 6th but pulse rate was not significantly decreased. Conclusions : Controlled trials investigating the efficacy of Gogoon acupuncture for lowering blood pressure are warranted.

  • PDF

An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter (촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구)

  • Cho, Yong-Seok;Noh, Young-Chang;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

Quantifying the Variation of Mass Flow Rate generated in a Simplex Swirl Injector by the Pressure Fluctuation for Injector Dynamics Research

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Cho, Seong-Ho;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.218-225
    • /
    • 2008
  • When the heat release and acoustic pressure fluctuations are generated in the combustor by irregular combustion, these fluctuations affect the mass flow rate of the propellants injected through the injectors. Also, the variations of the mass flow rate by these fluctuations again bring about irregular combustion and furthermore that is related with combustion instability. Therefore, it is very important to identify the mass variation for the pressure fluctuation on the injector and to investigate its transfer function. So, we first have studied quantifying the variation of mass flow rate generated in simplex swirl injector by injection pressure fluctuation. To acquire the transient mass flow rate in orifice with time, we have tried to measure of the flow axial velocity and liquid film thickness in orifice. The axial velocity is acquired through theoretical approach after measuring the pressure in orifice and the flow area in the orifice is measured by electric conductance method. As results, mass flow rate calculated by axial velocity and liquid film thickness measuring in orifice accorded with mass flow rate acquired by direct measuring method in the small error range within 1 percents in steady state and within 6 percents as average mass flow rate in pulsated state. Hence this method can be used to measure the mass flow rate not only in steady state but also in unsteady state because the mass flow rate in the orifice can acquire with time and this method shows very high accuracy based on the experimental results.

  • PDF

Investigation of Performance Characteristics in a Welded Plate Heat Exchanger according to Mass flow rate and Temperature (용접식 판형열교환기에서 작동유체의 유량과 온도변화에 따른 성능특성 고찰)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.20-26
    • /
    • 2018
  • In this study, the performance characteristics of a welded plate heat exchanger was investigated experimentally. Performance tests were carried out according to the flow rate and inlet temperature of working fluid. As a result, the heat transfer capacity increased by 335.5 kW with an increasing the flow rate and temperature difference between hot and cold side. However, the overall heat transfer coefficient was increased with the increase of flow rate, and it was not effected significantly from inlet temperature difference between hot and cold working fluid. The pressure drop was increased by 55.78 kPa with an increasing the frow rate when the flow rate ratio between hot and cold side 1:1. However, the tendency of pressure drop was difference when flow rate ratio wasn't 1:1. In case that the flow rate ratio between hot and cold side was not 1:1, the pressure drop at the low flow rate side was higher than that when the flow rate ratio was 1:1, while pressure drop of the other side was decreased compared to that when the flow rate ratio was 1:1.

Design and Performance Test of Plate Type ER-Valve (평판형 ER-Valve의 제작 및 성능실험)

  • 장성철;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2003
  • In this research 4 plate type ER-Valves which have same surface but different width and length are designed and an experimental apparatus is constructed. With this experimental apparatus, flow rate and pressure drop of ER fluid flowing in ER-valves are measured with varying electric field strength of ER-valve, and relation between valve types and pressure drop is also experimented. ER fluid is made silicon oil mixed with 40wt% starch having hydrous particles. If we allow the same electric field in the ER-Valve, we came to how that the pressure drop is effected by the electrode length and electrode width. When the strength of the electric field increased, the pressure drop happened big and the flow rate decreased.

An Experimental Study on Explosion Characteristics of Terephtalic Acid (Terephtalic Acid의 폭발특성에 관한 실험적 연구)

  • 오규형;문정기;김한석
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.41-48
    • /
    • 1990
  • In this study the explosion characteristics of terephtalic acid dust(PTA) was investigated with the Hartmann type apparatus. The minimum ignition energy, minimum explosible concentration, flame propagation velocity, explosion pressure, explosion pressure rise rate and the effect of inert dust(talcum) on explosion characteristics were measured. Flame velocity was 50m/s at 700g/m$^3$ concentration, and the explosion pressure and explosion pressure rise rate were most likely with that of gas explosion. It was found that an inert dust acts as a heat sinker and it disturbs the combustion of flammable dust, as a result, explosion pressure and explosion pressure rise rate were decreased and minimum explosion concentration was increased with increasing the fraction of talcum dust in PTA.

  • PDF