DOI QR코드

DOI QR Code

Machine-Learning Based Prediction of Rate of Injection in High-Pressure Injector

기계학습 기법을 적용한 고압 인젝터의 분사율 예측

  • 윤린 (세종대학교 대학원 우주항공시스템공학과 ) ;
  • 박지호 (세종대학교 대학원 우주항공시스템공학과 ) ;
  • 심형섭 (세종대학교 대학원 우주항공시스템공학과 )
  • Received : 2024.09.03
  • Accepted : 2024.09.20
  • Published : 2024.09.30

Abstract

This study explores the rate of injection (ROI) and injection quantities of a solenoid-type high-pressure injector under varying conditions by integrating experimental methods with machine learning (ML) techniques. Experimental data for fuel injection were obtained using a Zeuch-based HDA Moehwald injection rate measurement system, which served as the foundation for developing a machine learning model. An artificial neural network (ANN) was employed to predict the ROI, ensuring accurate representation of injection behaviors and patterns. The present study examines the impact of ambient conditions, including chamber temperature, chamber pressure, and injection pressure, on the transient profiles of the ROI, quasi-steady ROI, and injection duration. Results indicate that increasing the injection pressure significantly increases ROI, with chamber pressure affecting its initial rising peak. However, the chamber temperature effect on ROI is minimal. The trained ANN model, incorporating three input conditions, accurately reflected experimental measurements and demonstrated expected trends and patterns. This model facilitates the prediction of various ROI profiles without the need for additional experiments, significantly reducing the cost and time required for developing injection control systems in next-generation aero-engine combustors.

Keywords

Acknowledgement

본 연구는 본 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업(No. 915066201)과 과학기술정보통신부의 재원으로 한국연구재단 미래우주 교육센터(2022M1A3C2074404, 미래우주항법 및 위성기술연구센터)의 지원을 받아 수행된 연구임.

References

  1. Z. Yulu, F. Weijun and Z. Rongchun, "Experimental study on the effect of injection schemes on fuel spray and combustion characteristics in a compact combustor", Aerosp. Sci. Technol., Vol. 141, 2023, pp. 108510. 
  2. W. Hao, Z. Fujun and Z. Zhenyu, "Fundamental spray characteristics of air-assisted injection system using aviation kerosene", Fuel, Vol. 286, 2021, pp. 119420. 
  3. S. Kim, R. Torelli, S. K. Oruganti, JI. Ryu, T. Lee, K. S. Kim and C. M. Kweon, "Modeling of the spray-induced wall stress acting on the ignition assistance device", Phys. Fluids, Vol. 35, No. 10, 2023, pp. 103325. 
  4. Z. Shu, Z. Zhenfeng, W. Lei, Y. Chuncun, Y. Zhenhuan and W. Shangxue, "Experimental study on the effects of injection pressure on the combustion in a SI aviation piston engine fueled with kerosene", Fuel, Vol. 354, 2023, pp. 128875. 
  5. X. Sun, P. Agarwal, F. Carbonara, D. Abbott, P. Gauthier and B. Sethi, "Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics", In: ASME turbo expo 2020, Vol. 3, 2020. 
  6. F. Di Sabatino, K. Wan, J. Manin, T. Capil, Y. Hicks, A. Gander and C. Crua, "The role of diffusive mixing in current and future aviation fuels at relevant operating conditions", J. Eng. Gas. Turbines Power-Trans. ASME, Vol. 146, No. 5, 2024, pp. 051013. 
  7. F. Perini, S. Busch and R. D. Reitz, "A phenomenological rate of injection model for predicting fuel injection with application to mixture formation in light-duty diesel engines", Proc. Inst. Mech. Eng. Part D-J. Automob. Eng., Vol. 234, 2020, pp. 1826~1839. 
  8. P. Koukouvinis, C. Rodriguez, J. Hwang, I. Karathanassis, M. Gavaises and L. M. Pickett, "Machine Learning and transcritical sprays: A demonstration study of their potential in ECN Spray-A", Int. J. Engine Res., Vol. 23, No. 9, 2022, pp. 1556~1572. 
  9. R. Payri, J. Gimeno, M. Bardi and A. Plazas, "Effect of injection rate shaping over diesel spray development in non-reacting evaporative conditions", Int. Combust. Eng. Div. Spring Tech. Conf. ASME, Vol. 44663, 2012, pp. 347~356. 
  10. A. Kastengren, J. Ilavsky, J. P. Viera, R. Payri, D. J. Duke and A. Swantek, "Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering", Int. J. Multiph. Flow, Vol. 9, 2017, pp. 131~139. 
  11. R. Payri, S. Molina, F. J. Salvador and J. Gimeno, "A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems", KSME Int. J, Vol. 18 2004, pp. 1222~1235. 
  12. J. M. Desantes, J. Benajes, S. Molina and C. A. Gonzalez, "The modification of the fuel injection rate in heavy-duty diesel engines. Part 1: Effects on engine performance and emissions", Appl. Therm. Eng., Vol. 24, 2004, pp. 2701~2714. 
  13. L. M. Pickett, J. Manin, R. Payri, M. Bardi and J. Gimeno, "Transient rate of injection effects on spray development", SAE Tech. Pap., 2013. 
  14. C. Mata, V. Rojas-Reinoso and J. A. Soriano, "Experimental determination and modelling of fuel rate of injection: A review", Fuel, Vol. 343, 2023, pp. 127895. 
  15. L. Xu, X. S. Bai, M. Jia, Y. Qian, X. Qiao and X. Lu, "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system", Appl. Energy, Vol. 230, 2018, pp. 287~304. 
  16. J. A. Soriano, C. Mata, O. Armas and C. Avila, "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis", Energy, Vol. 158, 2018, pp. 845~858. 
  17. L. M. Pickett and D. L. Siebers, "Orifice diameter effects on diesel fuel jet flame structure", J. Eng. Gas Turbines Power, Vol. 127, 2005, pp. 187~196. 
  18. S. Busch and P. C. Miles, "Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device", J. Eng. Gas Turbines Power, Vol. 137, 2015, pp. 101503. 
  19. M. Meijer, B. Somers, J. Johnson, J. Naber, S. Y. Lee and L. M. Malbec, "Engine combustion network (ECN): Characterization and comparison of boundary conditions for different combustion vessels", Atom. Sprays, Vol. 22, 2012, pp. 777~806. 
  20. Z. William s, A. Moiz, K. Cung, M. Sm ith, T. Briggs and C. Bitsis, "Generation of rate-of-injection (ROI) profile for computational fluid dynamics (CFD) model of internal combustion engine (ICE) using machine learning", Energy AI, Vol. 8, 2022, pp. 100148. 
  21. S. C. Ray, K. Nishida, V. McDonell and Y. Ogata, "Effects of full transient injection rate and initial spray trajectory angle profiles on the CFD simulation of evaporating diesel sprays-comparison between singlehole and multi hole injectors", Energy, Vol. 263, 2023, pp. 125796. 
  22. H. Oh, J. Hwang, L. M. Pickett and D. Han, "Machine-learning based prediction of injection rate and solenoid voltage characteristics in GDI injectors", Fuel, Vol. 311, 2022, pp. 122569. 
  23. E. Choi, J. Park, J. Hwang, H. Oh, J. Manin and H. S. Sim, "Injection rate measurements and Machine-Learning based predictions of ECN Spray A-3 piezoelectric injector", Appl. Therm. Eng., Vol. 254, 2024, pp. 123827. 
  24. A. Takamura, T. Ohta, S. Fukushima and T. Kamimoto, "A study on precise measurement of diesel fuel injection rate", SAE Tech. Pap., 1992.