• Title/Summary/Keyword: Pressure rate

Search Result 8,587, Processing Time 0.043 seconds

Preparation of Photocatalysts by Hydrothermal Precipitation Method and Their Photocatalytic Performance of Brilliant Blue FCF (수열합성법에 의한 광촉매 제조 및 Brilliant Blue FCF 분해 성능)

  • Kim, Seok-Hyeon;Jeong, Sang-Gu;Na, Seok-En;Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.152-156
    • /
    • 2016
  • Experimental research on the preparation of photocatalyst for the decomposition of brilliant blue FCF ($C_{37}H_{31}O_9N_2S_3Na_2$) was performed. $TiO_2$ and ZnO powders were prepared from titanium (IV) sulfate and zinc acetate at low reaction temperature and atmospheric pressure by hydrothermal precipitation method without calcination. In addition, $TiO_2$ was prepared with cationic surfactant CTAB (Hexadecyltrimethyl ammonium bromide) at the same conditions. The physical properties of prepared $TiO_2$ and ZnO, such as crystallinity, average particle size and absorbance, were investigated by XRD, Zeta-potential meter and DRS. And, the photocatalytic degradation of brilliant blue FCF has been studied in the batch reactor under UV radiation. For the photocatalysts prepared without CTAB, $TiO_2$ has smaller particle size and larger absorbance and photocatalytic reaction rate than ZnO. And $TiO_2$, prepared with CTAB whose concentration is 1/10 of that of precursor, shows 15% higher than that prepared without CTAB in final photocatalytic degradation ratio of brilliant blue FCF.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.

Effect of CNG Heating Value Variations on Emissions Characteristics in a Diesel-CNG Dual-Fuel Engine (CNG 발열량 변화가 Diesel-천연가스 혼소엔진 배기 특성에 미치는 영향)

  • Jang, Hyongjun;Yoon, Junkyu;Lee, Sunyoup;Kim, Yongrae;Kim, Junghwan;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.43-49
    • /
    • 2016
  • In this paper, purpose of study is emissions characteristics according to effects of heating value variations of CNG fuel in a dual-fuel engine fueled by diesel and natural gas. For heating value variation of CNG fuel, nitrogen gas was mixed with pure CNG fuel. So the higher heating value was changed from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$. Under one condition of CNG substitution rate was fixed at 80%, diesel fuel was injected at a fixed injection timing of 16 CAD BTDC and fuel pressure was also fixed at 110 MPa. The condition of tested engine was 1800 rpm and 500Nm. Emissions were sampled in exhaust pipe was located at downstream turbocharger. As a result, emissions characteristics were checked in heating value variations of CNG fuel with mixed nitrogen gas THC, $CH_4$ and CO emissions decreased and NOx and $CO_2$ increased.

REAL-TIME MEASUREMENT OF DENTINAL TUBULAR FLUID FLOW DURING AND AFTER AMALGAM AND COMPOSITE RESTORATIONS (아말감과 복합레진의 수복 과정과 수복 후 발생하는 상아세관액 흐름의 실시간 측정)

  • Kim, Sun-Young;Cho, Byeong-Hoon;Baek, Seung-Ho;Lim, Bum-Sun;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.467-476
    • /
    • 2009
  • The aim of this study was to measure the dentinal tubular fluid flow (DFF) during and after amalgam and composite restorations. A newly designed fluid flow measurement instrument was made. A third molar cut at 3 mm apical from the CEJ was connected to the flow measuring device under a hydrostatic pressure of 15 $cmH_2O$. Class I cavity was prepared and restored with either amalgam (Copalite varnish and Bestaloy) or composite (Z-250 with ScotchBond MultiPurpose: MP, Single Bond 2: SB, Clearfil SE Bond: CE and Easy Bond: EB as bonding systems). The DFF was measured from the intact tooth state through restoration procedures to 30 minutes after restoration, and re-measured at 3 and 7days after restoration. Inward fluid flow (IF) during cavity preparation was followed by outward flow (OF) after preparation, In amalgam restoration, the OF changed to IF during amalgam filling and slight OF followed after finishing. In composite restoration, application CE and EB showed a continuous OF and air-dry increased rapidly the OF until light-curing, whereas in MP and SB, rinse and dry caused IF and OF, respectively. Application of hydrophobic bonding resin in MP and CE caused a decrease in flow rate or even slight IF. Light-curing of adhesive and composite showed an abrupt IF. There was no statistically significant difference in the reduction of DFF among the materials at 30 min. 3 and 7 days after restoration (p > 0.05).

A Study on Effect of Temperature on Particle Size Distribution of Nickel Ferrite (온도의 영향에 따른 니켈페라이트의 입자 크기 분포 연구)

  • Ahn, Hyung-Kyoung;Lee, In-Hyoung;Jeong, Hyun-Jun;Park, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1768-1774
    • /
    • 2008
  • The particulate behaviors of nickel ferrite were investigated under the simulated PWR shutdown chemistry conditions. Temperature of the simulated water with concentration of 0.1 ppm Li and 2,000 ppm B was dropped from $300^{\circ}C$ to $150^{\circ}C$ with a rate of $0.625^{\circ}C/min$ and then constantly maintained at $150^{\circ}C$ under the pressure of 2,500 psi. The on-line particle counting and the concentration measurement of nickel dissolved were performed under 5, 15 and 25 cc/kg $H_2O$ dissolved hydrogen. Experimental results showed that total particle count in the simulated water was not greatly changed for three hydrogen concentrations as temperature was decreased. However, particles were smaller as temperature was decreased and then maintained constantly. The degree of variation in particle size distribution was greater at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Concentration of nickel ion was increased as temperature was decreased and was higher at 15 cc/kg $H_2O$ dissolved hydrogen than any other dissolved hydrogen concentrations. Theses results show that nickel ferrite is unstable with temperature variation and at dissolved hydrogen concentration of 15 cc/kg $H_2O$.

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.

Molecular Analysis of Growth Factor and Clock Gene Expression in the Livers of Rats with Streptozotocin-Induced Diabetes

  • Kim, Joo-Heon;Shim, Cheol-Soo;Won, Jin-Young;Park, Young-Ji;Park, Soo-Kyoung;Kang, Jae-Seon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • Many biological systems are regulated by an intricate set of feedback loops that oscillate with a circadian rhythm of roughly 24 h. This circadian clock mediates an increase in body temperature, heart rate, blood pressure, and cortisol secretion early in the day. Recent studies have shown changes in the amplitude of the circadian clock in the hearts and livers of streptozotocin (STZ)-treated rats. It is therefore important to examine the relationships between circadian clock genes and growth factors and their effects on diabetic phenomena in animal models as well as in human patients. In this study, we sought to determine whether diurnal variation in organ development and the regulation of metabolism, including growth and development during the juvenile period in rats, exists as a mechanism for anticipating and responding to the environment. Also, we examined the relationship between changes in growth factor expression in the liver and clock-controlled protein synthesis and turnover, which are important in cellular growth. Specifically, we assessed the expression patterns of several clock genes, including Per1, Per2, Clock, Bmal1, Cry1 and Cry2 and growth factors such as insulin-like growth factor (IGF)-1 and -2 and transforming growth factor (TGF)-${\beta}1$ in rats with STZ-induced diabetes. Growth factor and clock gene expression in the liver at 1 week post-induction was clearly increased compared to the level in control rats. In contrast, the expression patterns of the genes were similar to those observed after 5 weeks in the STZ-treated rats. The increase in gene expression is likely a compensatory change in response to the obstruction of insulin function during the initial phase of induction. However, as the period of induction was extended, the expression of the compensatory genes decreased to the control level. This is likely the result of decreased insulin secretion due to the destruction of beta cells in the pancreas by STZ.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Study on the Synthesis Method of Simulated CRUD for Chemical Decontamination in NPPs (원전 화학제염을 위한 모의크러드 제조방법 연구)

  • Kang, Duk-Won;Kim, Jin-Kil;Kim, Kyeong-Sook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • As nuclear power plants are getting older, interests on a decontaminating process are increasingly attracting more attention. Chemical decontamination is crucial to lower the production of radioactive waste and radiation dose rate. Prior to this, oxidizers and detergents for target material should be chosen so as to decontaminate major systems and components of a nuclear power plant chemically. In order to decontaminate it properly, it is crucial to have information about the chemical composition and crystalline structure of CRUD, analyzing its samples from the target or the decontamination system with components. However, there is no program which enables the extraction of samples directly from the object or the decontamination system with components carrying genuine radioactivity. Therefore, it is limited to samples from corrosion products carrying partial radioactivity as a resource. The composition of CRUD varies considerably depending on refueling cycle because it is closely related to the constituent of basic material. After settling a target, it is crucial to analyze and obtain analytical information about CRUD as a decontamination target. In this paper, various technologies for manufacturing simulated CRUD are introduced as alternatives to unattained samples. A metal oxide or metal hydroxide was used to synthesize simulated cruds having chemical compositions and crystalline stricture similar to the actual one by 12 different methods. CRUD 4(metal oxides in the autoclave vessel) and CRUD 10(metal oxides in a crucible after hydrazing pretreatment)were chosen as the best method for Type 1 and Type 2.respectively. As these CRUD can be synthesized easily without using any specialized equipment or reagents in a short time and in large quantities, they are expected to stimulate the development of decontaminating agents and processes.

Influence of pH and Ionic Strength on Treatment of Radioactive Boric Acid Wastes by Forward Osmosis Membrane (정삼투막에 의한 붕산함유 방사성 폐액 처리를 위한 pH 및 이온강도 영향)

  • Choi, Hye-Min;Hwang, Doo-Seong;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • In general, boron recovery of 40-90% could be achieved by Reverse Osmosis (RO) membranes in neutral pH condition. As an emerging technology, Forward Osmosis (FO) membrane has attracted growing interest in wastewater treatment and desalination. The objective of this study is to evaluate the possibility of the boron removal in radioactive liquid waste by FO. In this study, the performance of FO was investigated to remove boron in the simulated liquid waste as the factors such as pH, osmotic pressure, ionic strength of solution, etc. The pH of feed solution is a major operating parameter which strongly influences to the permeation of boron and more than 80% of boron content can be separated when conducted at pH values less than 7. The water flux is not influenced but the boron flux and permeation rate tends to decrease in the low salt concentration of 1,000 mg/L. The boron flux increases linearly, but the permeation ratio of reducing boron is nearly constant even with changes in the draw solution concentration.