• Title/Summary/Keyword: Pressure offset

Search Result 138, Processing Time 0.036 seconds

Numerical simulation of hydraulic fracturing in circular holes

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza;Zhu, Zheming
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1135-1151
    • /
    • 2016
  • For investigating the effect of the pre-existing joints on the initiation pattern of hydraulic fractures, the numerical simulation of circular holes under internal hydraulic pressure with a different pattern of the joint distributions are conducted by using a finite element code, FRANC2D. The pattern of hydraulic fracturing initiation are scrutinized with changing the values of the joint length, joint offset angle. The hydraulic pressures with 70% of the peak value of borehole wall breakout pressure are applied at the similar models. The simulation results suggest that the opening-mode fracture initiated from the joint tip and propagated toward the borehole for critical values of ligament angle and joint offset angle. At these critical values, the crack grow length is influenced by joint ligament length. When the ligament length is less than 3 times the borehole diameter the crack growth length increases monotonically with increasing joint length. The opening-mode fracture disappears at the joint tip as the ligament length increases.

DESIGN ANALYSIS OF OFFSET STRIP FIN HEAT EXCHANGER

  • Bhowmik, Himangshu;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2131-2136
    • /
    • 2008
  • The characteristics of heat transfer and pressure drop in an offset strip fin heat exchanger was studied with a steady-state three dimensional numerical model. Flow Reynolds number $Re_{dh}$ ranged from 10 to 3500 and Prandtl number Pr ranged from 0.7 to 50. The dimensionless performance factors, i.e. 'the pumping power factor F' and 'the heat transfer performance factor J' were analyzed and obtained a relationship between them. Finally, the prediction of F and J factors was generalized for different Prandtl numbers.

  • PDF

Temperature Compensation Approach of Offset and Span for Piezo Type Pressure Sensor (압저항식 압력센서에서 온도가 Offset과 Span에 미치는 영향)

  • Lee, Seong-Jae;Park, Ha-Young;Kim, Jung-Ki;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1591-1593
    • /
    • 2004
  • 압력센서는 몇 가지 센싱 메카니즘을 가지고 있으므로 종류가 다양하고 크기 변에서도 여러 가지가 이용되고 있다. 최근에는 센싱 부분이 작으며 제어부분도 포함되는 ASIC화된 센서 시스템이 개발되고 있다. 여기에 이용되는 대부분의 탄성물질은 힘을 받았을 때 물질 내부의 벌크에서 저항 값이 변화하는 특성을 갖고 있다. 이러한 특성은 피에조 저항률(piezoresistivity)로 언급되며 스트레인 게이지의 감도에 영향을 주는 중요한 요소로 작용한다. 다이어프램으로 금속대선 세라믹을 사용하면 안정성이 우수한 특정을 가칠 수 있으며, 부식성 가스 류 및 화학성분에 대해서 내성이 강하고 환경변화에 따른 변형과 공정의 단순화 등 우수한 특성을 갖고 있는 것이 큰 장점이다. 센싱부는 산화 루세니움($RuO_2$)을 주 성분으로 하는 분말을 Paste화 하여 다이어프램 위에 스크린 프린팅을 하여 기본성능을 나타내었으며 특히, 상품화에서 중요한 일반성능에서는 온도 특성에 대한 Span 과 Offset 그리고 공정의 단순화에 대해서 고찰을 하였다.

  • PDF

Thermo-Flow Analysis of Offset-Strip Fins according to Blockage Ratio (옵셋 스트립 휜의 막음비에 따른 열 및 유동 분석)

  • Kim, Min-Soo;Yu, Seung-Hwan;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1084-1089
    • /
    • 2009
  • A numerical study of thermo-flow characteristics is presented to determine correlations of pressure drop and heat transfer for offset-strip fins. As a blockage ratio increased, previous correlations underestimate f values in laminar and turbulent regimes, and overestimate j values in laminar regime. Therefore, new correlations, which are applicable to fins with blockage ratios more than 15%, are presented.

  • PDF

Thermal Analysis of Compact Circular Water Cooled Engine Oil Cooler (고집적 원통형 수냉식 엔진 오일쿨러의 열적 해석)

  • 윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.771-781
    • /
    • 1998
  • A highly compact and thermally efficient water cooled oil cooler for automotive use without offset strip fin and casing is developed in this study. The study result has shown that eliminating the fin and casing in the oil cooler the manufacturing process and cost and can be simplified and reduced greatly without sacrificing the thermal capacity. The oil cooler developed in the study uses the dimply type heat transfer core element design instead of offset strip fin and eliminates the outer casing for coolant water flow by applying specially made parallel loop flow design. In the study the thermal design program for the present oil cooler also was developed and validated experimentally.

  • PDF

A Study on the Plane Turbulent Offset Jet (평면 난류 오프셋 제트에 관한 연구)

  • 유정열;강신형;채승기;좌성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.357-366
    • /
    • 1986
  • The flow characteristics of two-dimensional turbulent offset jet which is discharged parallel to a solid wall has been studied experimentally and numerically. In the experiment, 3-hole pitot tube and 2 channel constant temperature hot-wire anemometer are used to measure local mean velocity, turbulence intensity and Reynolds stress while scannivalve is used to measure the wall pressure distribution. It is confirmed experimentally that local mean velocity is closely related to wall pressure distribution. It is also verified that for large Reynolds numbers and fixed step height there exists a similarity in the distribution of wall pressure coefficient. The maximum values of turbulence intensity occur in the top and bottom mixing layers and the magnitude of Reynolds stress becomes large in the lower mixing layer than in the top mixing layer due to the effect of streamline curvature and entrainment. In the numerical analysis, standard k-.epsilon. model based on eddy viscosity model and Leschziner and Rodi model based on algebraic stress model are adopted. The numerical analyses predict shorter reattachment lengths than the experiment, and this difference is judged to be due mainly to the problem of turbulence model constants and numerical algorithm. This also causes the inconsistency between the two results for other turbulence quantities in the recirculation region and impingement region, which constitutes a subject of a continued future study.

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Computer Simulation for the Cavitation Changes at the Exit of Offset Printing Nip (오프셋 인쇄의 틈새출구에서 공동의 변화에 대한 시뮬레이션)

  • Youn, Jong-Tae;Kim, Yun-Taek;Lim, Soo-Man
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • Offset paper printing is a promising roll-to-roll technique for color printed materials. Although it is no doubt that understanding ink transfer mechanism in offset printing process is necessary to achieve high printing quality, investing the relationship between inks and substrates at the nip is difficult experimentally due to high printing speed. In this paper, rheological behavior and splitting point of the ink at the nip is studied using package software Ployflow and Flow 3D based on Navier-Stokes equation. Polydimethylsiloxane (PDMS) ink and IGT printability tester were used for an model ink and experiment to compare with that of simulation data, respectively. As a result, higher viscosity at state flow and pressure increased ink transfer due to higher possibility of presence of cavitation at the nip and increase in covering area ratio. These results have shown good agreements with experimental data compared by measuring density of print through.

An investigation on heat transfer effects of two dimensional plane jet attaching offseted obliqued wall (단이 진 경사벽면에 부착되는 2차원 평면제트의 열전달 효과에 관한 연구)

  • Yun, Sun-Hyeon;Lee, Dae-Hui;Sim, Jae-Gyeong;Song, Heung-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1314-1325
    • /
    • 1997
  • Experiments have been conducted to determine the flow and heat transfer characteristics for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a flat surface. The distributions of the wall static pressure coefficient and time-averaged reattachment position for various offset ratios and oblique angles have been measured. The local Nusselt number distributions on the plate surface were also measured using liquid crystal as a temperature indicator. The new hue-capturing technique utilizing a true color image processing system was used to accurately determine the temperature of the liquid crystal. The experiments were carried out at Reynolds number, Re (based on D) of from 7300 to 21,300 with offset ratio, H/D from 2.5 to 10, and oblique angle, .alpha. from 0 deg. to 400 deg..

Characteristics silicon pressure sensor using dry etching technology (건식식각 기술 이용한 실리콘 압력센서의 특성)

  • Woo, Dong-Kyun;Lee, Kyung-Il;Kim, Heung-Rak;Suh, Ho-Cheol;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.