• Title/Summary/Keyword: Pressure of lateral flow

Search Result 109, Processing Time 0.02 seconds

A study on the stability of pile bridge abutment on soft ground undergoing lateral flow (연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구)

  • 오일록;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

A Study on the Lateral Flow of the Silts which is Polluted with a Garbage Leachate to the Dyes (쓰레기 침출수와 염료로 오염된 실트지반의 측방유동에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum;Ahn, Ki-Mun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1157-1166
    • /
    • 2008
  • Critical surcharge value of silt ground polluted with garbage leachate to the dyes $q_{cr}=3.73c_u$ and ultimate bearing capacity value $q_{ult}=8.60c_u$. Lateral flow pressure at polluted silt ground was about $P_{max}$/3 and depth of maximum lateral flow pressure was found at that of H/3 of soft layer thickness(H). Expression of polluted silt ground of fracture baseline at stability control charge by Matsuo Kawamura is $S_v=3.56\exp\{0.51(Y_m/S_v)\}$.

  • PDF

A Study on the Calculation of Lateral Flow Pressure of Polluted Soils with Various Water Contents (함수량이 다른 오염지반의 측방유동압 산정에 관한 연구)

  • 안종필;박경호
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • When unsymmetrical surcharge is worked on polluted soft soils, large plastic shearing deformation such as settlements, lateral displacement, upheavals and shearing failure occured in the soils and they have often done considerable damages to the soils and structures. Accordingly, this study conducts laboratory pilots test to investigate the determination method of lateral flow pressure of polluted soft soils by comparing it to existing equations. The model test is performed that a model stock device is made and polluted soils are filled in a container which fires the soils. Then the displacement is observed as surcharge load is increased by regular intervals at untrained condition. The result shows that test the lateral flow pressure is adequately calculated by the equation (P=K$_{0}$YH) and the maximum value of lateral flow pressure Is found near 0.3H of layer thickness(H) and is higher to ground surface than synthesis pattern, Poulos distribution pattern and soft clay soils(CL, CH) which is not polluted.

Study on the Lateral Force Fluctuations in a Rocket Nozzle (로켓노즐에서 발생하는 횡력변동에 관한 연구)

  • Nagdewe, Suryakant;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

Lateral Earth Pressure Caused by Action on Earth Retaining Wall in Clay Foundation Ground with Consideration of Construction Speed (지중 구조물에 작용하는 측방토압에 대한 성토 재하 속도의 영향)

  • Im Eun-Sang;Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.57-68
    • /
    • 2004
  • When an embankment is constructed on soft clay ground, the lateral displacement generally called as lateral flow is generated in the foundation ground. It strongly affects stabilities of structures, such as foundation piles and underground pipes, in and on the foundation ground. The lateral earth pressure induced by the lateral flow is influenced by the magnitude and construction speed of embankment, the geometric conditions and geotechnical characteristics of the embankment, and the foundation ground, and so on. Accurate methods for estimating the lateral earth pressure have not ever been established because the lateral flow of a foundation ground shows very complicated behavior, which is caused by the interaction of shear deformation and volumetric deformation. In this paper, a series of model tests were carried out in order to clarify effects of construction speed of an embankment on the lateral earth pressure in a foundation ground were design. It was found that the magnitude and the distribution of the lateral earth pressure and its change with time are dependent on the construction speed of the embankment. It was found that a mechanism for the lateral earth pressure was generated by excess pore water pressure due to negative dilatancy induced by shear deformation under the different conditions of construction speeds of embankments.

Numerical Analysis of Utility Tunnel Movement under Reclamation Ground (매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석)

  • Yoon, Woo Hyun;Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.64-71
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for different jet flow conditions including jet pressure and jet Mach number. The results show different behavior of normal force and moment variation according to jet pressure variation and jet Mach number variation. From the detailed flow field analyses, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by obtaining the lateral thrust through higher jet Mach number rather than through high jet pressure.

A Study of Lateral Force Fluctuations in Over-Expanded Nozzle Flow (과팽창 노즐 유동에서 발생하는 측력변동에 관한 연구)

  • Lee, Jong-Sung;Cha, Yong-Su;Vincent, Lijo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.253-256
    • /
    • 2009
  • In the present paper, experimental and numerical fundamental analyses of the occurrence of lateral force in overexpanded thrust nozzle were carried out. Investigation of the lateral force fluctuations in an thrust nozzle for the shutdown transient was presented. Wall pressure distribution and Schlieren Photographs as NPR were presented. Pressure peak is observed during transition of RSS to FSS.

  • PDF

Development of Artificial Lateral Line Sensor for Flow Velocity and Angle Measurements (유속 및 각도 측정을 위한 인공 옆줄 센서 개발)

  • Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.30-35
    • /
    • 2021
  • To operate an underwater robot in an environment with fluid flow, it is necessary to recognize the speed and direction of the fluid and implement motion control based on these characteristics. Fish have a lateral line that performs this function. In this study, to develop an artificial lateral line sensor that mimics a fish, we developed a method to measure the flow speed and the incident angle of the fluid using a pressure sensor. Several experiments were conducted, and based on the results, the tendency according to the change in the flow speed and the incident angle of the fluid was confirmed. It is believed that additional research can aid in the development of an artificial lateral line sensor.