• 제목/요약/키워드: Pressure jet

검색결과 1,023건 처리시간 0.032초

측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향 (Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect)

  • 민병영;이재우;변영환;현재수;김상호
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.64-71
    • /
    • 2004
  • 측 추력(Lateral Jet)을 이용하여 자세를 제어하는 미사일 주위의 초음속 유동장 해석을 위하여 삼차원 Navier-Stokes 코드 (AADL3D)를 개발하고, 이를 이용한 수치해석 연구를 수행하였다. 분출 제트 압력, 분출 마하수 등을 포함하는 제트의 유동특성이 미사일에 미치는 수직력 및 피칭모멘트에 대한 영향을 알아보기 위한 사례연구를 수행하였으며, 공력 해석 결과 제트의 분출 압력과 분출 마하수 변화에 따른 서로 다른 수직력과 모멘트 변화 양상 및 그 원인을 확인할 수 있었다. 또한 대부분의 수직력 손실과 피칭모멘트 발생은 노즐 후방의 저압영역에 의한 것이며, 동일한 제트 추력일지라도 분출 마하수가 큰 경우가 분출 압력이 큰 경우보다 모멘트 발생 최소화에 유리함을 확인하였다.

평판에 충돌하는 초음속 제트에 유동특성 (Characteristics of Supersonic Jet Impingement on a Flat Plate)

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

고압 유동조건에서의 액체 램제트 엔진의 분무특성 (Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition)

  • 윤현진;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

환형동축 초음속 자유 제트유동에 관한 실험적 연구 (The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets)

  • 이권희;이준희;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

고압실 형상에 따른 환형 제트펌프의 특성 (The Effect of High Pressure Chamber's Shape on the Characteristics of Annular Jet Pump)

  • 권오붕
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.428-434
    • /
    • 1999
  • Experimental studies on the characteristics of annular jet pump were carried out in this paper. Jet pump can be used widely for the transportation of solid materials, farm produce and fishes. The effects of high pressure chamber on the characteristics of annular jet pump were sought in this paper. Experiments were done for three shapes of high pressure chamber, and for several lengths of the high pressure chamber. Three types of the high pressure chamber's entrances($90^{\circ}$ single inflow, $45^{\circ}$single inflow, and $45^{\circ}$ double inflow) were tested. Water was used for both the primary fluid and secondary fluid. The results obtained in this study are as follows; $45^{\circ}$double inflow type is the most effective among the tested three types of the high pressure chamber's entrances. The efficiency of jet pump with 400mm of high pressure chamber length is the highest among the chamber lengths tested in this study, thus indicating appropriate chamber length is required to get an efficient.

  • PDF

경사충돌제트의 PSP 압력장 가시화 (PSP Pressure Field Visualization of an Oblique Impinging Jet)

  • 강종훈;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.10-13
    • /
    • 2004
  • The PSP(pressure sensitive paint) technique has recently received a large attention as a new revolutionary optical method to measure absolute pressure distribution on a model surface. The PSP technique can be applied to quantitatively investigate flow structure using a CCD camera and image processing technique. In the static calibration, the luminescent intensity of PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. In this study, the low-pressure PSP technique was applied to an oblique impinging jet to measure pressure field variations on the impingement plate with varying angle of an oblique jet. The flow structure over the impingement plate was visualized using a surface tracing method. As a result, the detail pressure field distributions of the oblique low-speed impinging jet were visualized effectively using the PSP technique.

  • PDF

Flow-Feedback for Pressure Fluctuation Mitigation and Pressure Recovery Improvement in a Conical Diffuser with Swirl

  • Tanasa, Constantin;Bosioc, Alin;Susan-Resiga, Romeo;Muntean, Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.47-56
    • /
    • 2011
  • Our previous experimental and numerical investigations of decelerated swirling flows in conical diffusers have demonstrated that water jet injection along the symmetry axis mitigates the pressure fluctuations associated with the precessing vortex rope. However, for swirling flows similar to Francis turbines operated at partial discharge, the jet becomes effective when the jet discharge is larger than 10% from the turbine discharge, leading to large volumetric losses when the jet is supplied from upstream the runner. As a result, we introduce the flow-feedback approach for supplying the jet by using a fraction of the discharge collected downstream the conical diffuser. Experimental investigations on mitigating the pressure fluctuations generated by the precessing vortex rope and investigations of pressure recovery coefficient on the cone wall with and without flow-feedback method are presented.

Numerical Investigation of the Shock Interaction Effect on the Lateral Jet Controlled Missile

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.357-364
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. Case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several different jet flow conditions, angle of attacks, circumferential jet locations, and spouting jet angles. For the several different jet flow conditions, which include the jet pressure, the jet Mach number, and the corresponding jet mass flow rate, the results show that the normal force coefficient is almost proportional to the jet thrust but the moment coefficient is not. Distinctly different flow phenomena can be noticed as the pressure ratio and the jet Mach number increase. By investigating the angle of attack effect to the normal force and the pitching moment, it has been identified that the normal force and the pitching moment show nonlinearity with respect to the angle of attack. From the detailed flow field analyses with respect to the jet flow conditions and the angle of attacks, it is verified that most of the normal force loss and the pitching moment generation are taken place at the low-pressure region behind the jet nozzle. Furthermore, the normal force and the pitching moment characteristics of the missile have been identified by comparing different circumferential jet locations and spouting jet angles.

  • PDF

Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2 (A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II))

  • 전춘생
    • 전기의세계
    • /
    • 제22권5호
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF