• Title/Summary/Keyword: Pressure hull

Search Result 258, Processing Time 0.033 seconds

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

The Assessment of Propeller Induced Fluctuating Pressure Influencing Hull Girder Vibration Analysis (전 선체 진동에 영향을 미치는 프로펠러 변동압력의 평가)

  • Lee, Ki-Moon;Yang, Sung-Boong;Kim, Moon-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.59-64
    • /
    • 2009
  • The propeller induced forces acting on a hull are surface forces and bearing forces. The bearing forces are the forces acting directly on the propeller which are transferred to the hull through the propeller bearings. The surface forces are those which act by fluid pressure directly on the various hull surfaces. Because the surface force is main source to oscillate stern constructions and deckhouse, the estimation of surface force is very important to predict response of forced vibration of that. The estimation methods were statistical analysis method, theoretical analysis method and method through model test.

  • PDF

A Study on the Distortion Control for the Penetration Weldments of Pressure Hull (압력 선체 관통구 용접부의 변형 제어에 관한 연구)

  • Kim Ha Geun;Lee Hui Tae
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.254-256
    • /
    • 2004
  • The purpose of this study is to establish the control method of angular distortion at the weldment of the pressure hull penetration. In order to do it, comprehensive experiment and FEA were performed to evaluate the distortion behavior for the weldment of HY-100. Based on the results, a proper deposit sequence for the both sides X groove penetration weldment was established. In addition, a proper welding sequence was proposed by evaluation of bending restraint intensity with size and position of pressure hull penetration.

  • PDF

Investigation of Flow Noise Source of Hull Mounted Sonar Dome (선저 소나돔의 유체소음원 특성 분석)

  • Shin, Ku-Kyun;Kang, Myengwhan;Yi, Jong-Ju;Seo, Youngsoo;Lee, Kyung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.575-576
    • /
    • 2014
  • The Hull Mounted Sonar Dome housing the sonar sensor array is a ship's structure protruded from ship bottom, which is under turbulent flow. The flow of sonar surface is highly disturbed and turbulent. In this case the wall pressure fluctuations within the turbulent boundary layer are one of the most important flow induced self noise sources of the SONAR system. We investigate the characteristics of the wall pressure fluctuations of the hull mounted sonar dome through the model test in the cavitation tunnel. This paper contains the wall pressure fluctuation spectra at various free stream velocities.

  • PDF

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Development of a Digital Mock-up for Conceptual Design of a Submarine (잠수함 개념 설계를 위한 디지털 목업 개발)

  • Kim, Tae-Hwan;Chun, Sang-Hoo;Sheen, Dong-Mok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.152-157
    • /
    • 2009
  • In designing and manufacturing a submarine, an expensive real mock up is usually built as a reference because of the spatial constraints of a submarine. This paper presents an integrated and automated design process for a submarine that uses a digital mock up. Various equipment libraries are built for feature based design. Using the developed digital mock up, this paper shows various ways to verify the design, including a space analysis to check for any interference between pieces of equipment and the hull and an ergonomic analysis using lifelike dummies to examine the work space and operability. As a part of the integrated design system, a design automation system was also developed to generate surface point data for the outer hull, pressure hull, casing, and sail. The whole process was applied to the design of a submarine for verification.

A Study of a Correlation between Experiments and Calculations of Pressure Fluctuation on Hull Surface (선체 변동 압력에 관한 실험과 이론의 비교 연구)

  • Moon-Chan Kim;Ki-Sup Kim;In-Haeng Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • An experimental and computational study of the pressure fluctuation induced by a propeller on a hull surface was carried out with three ship models and seven model propellers. The fluctuation of pressure on a flat plate was measured at KRISO cavitation tunnel and calculated by a panel and lifting surface method(XForShip code). To extend the measurement data on the flat plate into that on complex hull forms, the correction factor was determined as a ratio of the solid boundary factor(SBF). The computation of pressure fluctuation around complex hull forms was also performed to make the full scale prediction and compared with the corrected experimental data. The calculated values agreed well with the compensated experimental data and it was found that the correction factor was about 0.65-0.7.

  • PDF

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.

A Study on the Estimation of Hull Form Coefficient of Slamming Impact Pressure (슬래밍 충격 압력 계산을 위한 선수선저의 형상계수 추정에 관한 연구)

  • Jeong, Seok-Gwon;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 1986
  • On the slamming analysis of ship design the data for the impact pressure acted on the forward bottom of a ship are needed. Furthermore impact pressure is given by the function of both the hull form coefficient and relative velocity. In this papper. a simplified method to estimate hull form coefficient by perso;,al computer (p. c.) is studied. This numerical analysis was applied to the model of the Mariner type. and then the result by the p. c. was compared with that by IBM 7090 computer. Main results obtained are as follows: 1. The result by the developed p. c. method had fairly good agreement with that by conventional large computer (IBM 7090) within 2% error. 2. This developed method' by p. c. may be applied to the initial estimation of the K-value because of the close agreement between the ship lines by the results of p. c. and that of input.

  • PDF

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF