• Title/Summary/Keyword: Pressure force

Search Result 2,831, Processing Time 0.028 seconds

Gaussian Mixture based K2 Rifle Chamber Pressure Modeling of M193 and K100 Bullets (가우시안 혼합모델 기반 탄종별 K2 소화기의 약실압력 모델링)

  • Kim, Jong-Hwan;Lee, Byounghwak;Kim, Kyoungmin;Shin, Kyuyong;Lee, Wonwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • This paper presents a chamber pressure model development of K2 rifle by applying Gaussian mixture model. In order to materialize a real recoil force of a virtual reality shooting rifle in military combat training, the chamber pressure which is one of major components of the recoil force needs to be investigated and modeled. Over 200,000 data of the chamber pressure were collected by implementing live fire experiments with both K100 and M193 of 5.56 mm bullets. Gaussian mixture method was also applied to create a mathematical model that satisfies nonlinear, asymmetry, and deviations of the chamber pressure which is caused by irregular characteristics of propellant combustion. In addition, Polynomial and Fourier Regression were used for comparison of results, and the sum of squared errors, the coefficient of determination and root-mean-square errors were analyzed for performance measurement.

The methods for occlusal force measurement and their clinical applicatio (임상가를 위한 특집 3 - 교합력 측정의 방법과 임상적 적용)

  • Park, Ji-Man;Heo, Seong-Joo;Chun, Yoon-Sic
    • The Journal of the Korean dental association
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2012
  • The methods for the occlusal force measurement have long been developed. The occlusal analyzing equipment utilizing the pressure-sensitive film (Prescale) is useful for the assessment and comparison among large group of patients. On the other hand, the apparatus which uses the grid-based sensor sheet (T-scan) can be a useful assistant for acquiring the well-balanced occlusion. The device that can process the electrical input from the strain gauge which is attached to the tooth surface can collect the dynamic data of actual masticatory force. This device has been developed for the measurement of actual mastication with the food bolus and it can be a useful method for the comparison before and after the restorative treatment. Occlusal force measurement can be applied for the analysis of therapeutic action, diagnosis of crack- tooth syndrome, temporomandibul ar disease, and idiopathic implant loosening.

Slip Detection of Robot Gripper with Flexible Tactile Sensor (유연 촉각 센서를 이용한 로봇 그리퍼의 미끄러짐 감지)

  • Seo, Ji Won;Lee, Ju Kyoung;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • In this paper, we design a gripping force control system using tactile sensor to prevent slip when gripper tries to grasp and lift an object. We use a flexible tactile sensor for measuring uniplanar pressure on gripper's finger and develop an algorithm to detect the onset of slip using the sensor output. We also use a flexible pressure sensor to measure the normal force. In addition, various signal processing techniques are used to reduce noise included in the sensor output. A 3-finger gripper is used to grasp and lift up a cylindrical object. The tactile sensor is attached on one of fingers, and sends output signals to detect slip. Whenever the sensor signal is similar to the slip pattern, gripper force is increased. In conclusion, this research shows that slip can be detected using the tactile sensor and we can control gripping force to eliminate slip between gripper and object.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

A Study of the Shearing Force as a Function Trim Punch Shape and Shearing Angle (트리밍펀치 형상과 전단 각에 따른 전단하중 특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • By investigating the practical use of trim punch configurations for shearing of vehicle panels, the current study first reviews the shearing angle as part of the shearing die design. Based on this review, four different types of trim punch shapes (i.e., horizontal, slope, convex, and concave type) and shearing angles(i.e., 0.76°, 1.53°, 2.29°, 3.05°, 3.81°) were investigated. In order to conduct shearing experiments, four types of trim punch dies were made. The four trim punch dies were tested under various conditions. The experiments used the four trim punch shapes and the five shearing angles. The shearing force varied by shape and decreased from horizontal, slope, convex, to concave for the same shearing angle. The magnitude of shearing force showed differences between the convex and the concave shapes due to the influence of constrained shearing versus free shearing. The test results showed that compared to the horizontal trim punch shearing force, the decrease of the slope, convex, and concave shearing forces were 22.6% to 60.4%. Based on the results, a pad pressure of over 30% is suggested when designing a shearing die.

Modeling and Design of Impact Hammer Drill (충격햄머드릴의 기구해석 및 설계)

  • 박병규;김재환;백복현;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

CFD Analysis of Characteristic for Drag Force on leading Cab made of Composite Material (복합재 철도차량 전두부의 공기저항 특성 분석을 위한 유동해석)

  • Ko Taehwan;Song Younsoo;Hu Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.38-42
    • /
    • 2004
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car made of composite material. The results of aerodynamic analysis for two leading car models, which one is expressed with lineal beauty and the other is with curvaceous beauty, are compared with each other and offer the proposal of modification for two models in order to decrease be drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

CFD Analysis of Drag Force on leading Cab of Tilting Train with 180km/h Service Speed (수치해석을 통한 180km/h급 틸팅차량 전두부의 주행 공기저항 해석)

  • Ko Taehwan;Song Younsoo;Han Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.351-357
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed at 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.