• Title/Summary/Keyword: Pressure drops

Search Result 299, Processing Time 0.024 seconds

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Ice Nucleating Activities of Ice Nucleation-Active Bacteria Sterilized with Heat, Pressure and Irradiation , and Their Thermophysical Effects on Water (가열, 고압, 방사선 처리된 빙핵활성세균의 활성 및 물의 동결특성에 미치는 영향)

  • Kim, Hyun-Jeong;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.326-336
    • /
    • 1997
  • Four ice nucleation-active bacteria (INA-bacteria), Pseudomonas syringae, Xanthomonas campestris, Escherichia coli JM109/pEIN229 and Gluconobacter oxydans/pKIN230, were treated with heat, pressure and gamma-irradiation to compare viability and their ice nucleation activity (INA) after sterilization. Gamma-irradiated INA-bacteria showed the least decrease in T90 value (the temperature at which the 90% of drops are frozen). According to cumulative INA spectra, gamma-irradiated INA-bacteria showed little decrease in class A ice nuclei $(nucleate\;H_{2}O\;at\;higher\;than\;-5^{\circ}C)$, pressurized INA-bacteria showed more than 90% decrease in class A ice nuclei, and heat-treated INA-bacteria barely showed class A ice nuclei. Differential scanning calorimetry (DSC) was used to examine the effect of INA-bacteria on the thermophysical properties of water at freezing temperature. Freezing peaks were appeared at about $11{\sim}15^{\circ}C$ higher on thermograms and enthalpies of phase change were decreased for the water containing INA-bacteria compared with the pure water, while melting peaks were not shifted. INA measured by DSC method were significantly correlated with INA measured by drop freezing method $(R^{2}>0.993,\;p<0.0001)$, indicating that DSC can be used as a new, simple and precise method for measuring INA.

  • PDF

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

Analysis of Holdup Characteristics of Large and Small Bubbles in Three-Phase Fluidized Beds by using a Dynamic Gas Disengagement Method (삼상유동층에서 동력학적 기체유출 측정방법에 의한 큰 기포와 작은 기포의 체류량 특성 해석)

  • Lim, Hyun Oh;Lim, Dae Ho;Seo, Myung Jae;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.605-610
    • /
    • 2011
  • Phase holdup characteristics of relatively large and small bubbles were investigated in a three-phase(gasliquid-solid) fluidized bed of which diameter was 0.105 m(ID) and 2.5 m in height, respectively. Effects of gas(0.01~0.07 m/s) and liquid velocities(0.01~0.07 m/s) and particle size($0.5{\sim}3.0{\times}10^{-3}m$) on the holdups of relatively large and small bubbles were determined. The holdups of two kinds of bubbles in three phase fluidized beds were estimated by means of static pressure drop method with the knowledge of pressure drops corresponding to each kind of bubble, respectively, which were obtained by dynamic gas disengagement method. Dried and filtered air which was regulated by gas regulator, tap water and glass bead of which density was $2500kg/m^3$ were served as a gas, a liquid and a fluidized solid phase, respectively. The two kinds of bubbles in three-phase fluidized beds, relatively large and small bubbles, were effectively detected and distinguished by measuring the pressure drop variation after stopping the gas and liquid flow into the column as a step function: The increase slope of pressure drop with a variation of elapsed time was quite different from each other. It was found that the holdup of relatively large bubbles increased with increasing gas velocity but decreased with liquid velocity. However, the holdup showed a local minimum with a variation of size of fluidized solid particles. The holdup of relatively small bubbles increased with an increase in the gas velocity or solid particle size, while it decreased slightly with an increase in the liquid velocity. The holdups of two kinds of bubbles were well correlated in terms of operating variables within this experimental conditions, respectively.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

A Study of Upper Airway Resistance Syndrome : Clinical and Polysomnographic Characteristics (상기도저항 증후군에 대한 연구 : 임상 및 수면다원검사 특징)

  • Yang, Chang-Kook;Clerk, Alex
    • Sleep Medicine and Psychophysiology
    • /
    • v.3 no.2
    • /
    • pp.32-42
    • /
    • 1996
  • Objectives : Upper airway resistance syndrome(UARS) is a sleep-related breathing disorder characterized by abnormal negative intrathoracic pressure during sleep. Abnormally increased negative intrathoracic pressure results in microarousal and sleep fragmentation which underlay UARS-associated complaints of daytime fatigue and sleepiness. Although daytime dysfunction in patients with UARS is comparable to that of sleep apnea syndrome, UARS has been relatively unnoticed in clinical setting. That is why UARS is apt to be excluded in diagnosing of sleep-related breathing disorders since its respiratory disturbance index and arterial oxygen saturation are within normal limits. The current study presents a summary of clinical and polysomnographic characteristics found in patients with UARS. The present study aims (1) to explore characteristics of patients diagnosed with UARS, (2) to characterize the polysomnographic findings of UARS patients, and (3) to enhance the understanding of UARS through those clinical and laboratory characteristics. Methods : This was a retrospective study of 20 UARS patients (male 15, female 5) and 30 obstructive sleep apnea (OSA) patients (male 21, female 9) at the Stanford Sleep Disorders Clinic. We diagnosed patients as having UARS when they met critenia, RDI < 5 characteristic findings of an elevated esophageal pressure($<-10\;cmH_2O$), frequent arousals secondary to an elevated esophageal pressure, and symptoms of daytime fatigue and sleepiness. We used polysomnographic value, which is standardized by Williams et al(1974), as normal control. Statiotical test were done with student t-tests. Results : (1) Mean age of UARS was $41.0\;{\pm}\;14.8$ years and OSA was $50.9\;{\pm}\;12.0$ years. UARS subject was significantly younger than OSA subject (p<0.05). (2) The total score of Epworth Sleepiness Scale (ESS) was UARS $9.7\;{\pm}\;6.3$ and OSAS $11.2\;{\pm}\;6.3$. There was no significant difference between two groups. (3) The mean body mass index was UARS $28.1\;{\pm}\;5.7\;kg/m^2$ and OSAS $32.9\;{\pm}\;7.0\;kg/m^2$. UARS had significantly lower meen body man index than OSAS subjects (p<0.05). (4) The polysomnographic parameters of UARS were not significantly different from those of OSA except RDI(p<0.001), $SaO_2$ (p<0.001) and slow wave sleep latency (p<0.05). (5) Compared with normal control, Total sleep time in UARS subjects was significantly shorter (p<0.001), sleep efficiency index was significantly lower (p<0.001), total awakening percentage was significantly higher (p<0.001), and sleep stage 1 (p<0.001) were significantly higher. (6) OSA patients showed poor sleep quality and distinct abnormal sleep architectures compared with normal control. Conclusions : Conclusions from the above results are as follows : (1) UARS patients were younger and had lower body mass index when umpared with OSA patients. (2) The quality of sleep and sleep architectures of the UARS and OSA patients are significantly different from those of normal control. (3) ESS scores and awakening frequencies of UARS are similar with those of OSA, suggesting that daytime dysfunction of UARS patients may be comparable to those of OSA patients. (4) The RDI and the $SaO_2$ which are important indicators in diagnosing sleep-related breathing disorders, of UARS subjects are close to normal value. (5) According to the the above results, we unclude that despite the absence of $SaO_2$ drops and the absence of an elevated number of apnea and hypopnea, subjects developed clinical complaints which were associated with laborious breathing, elevated Pes nadir, and frequently snoring. (6) Accordingly, we suggest including LIARS in the differential diagnosis list when sleep related breathing disorder is suspected clinically and overnight polysomnographic findings except snoring and frequent microarousal are within normal limits.

  • PDF

Evaluation for Soil Moisture Stabilization and Plant Growth Response in Horizontal Biofiltration System Depending on Wind Speed and Initial Soil Moisture (풍속과 초기 토양수분에 따른 평면형 바이오필터 내 토양수분 안정화 및 식물 생육반응 평가)

  • Choi, Bom;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.546-555
    • /
    • 2014
  • The final aim of this study is to develop a biofiltration system integrated with plant vegetation for improving indoor air quality effectively depending on indoor space and characteristics. However, to approach this final goal, several requirements such as constant pressure drops (PDs) and soil moisture contents (SMCs), which influence the capacity design for a proper ventilation rate of biofiltration system, should be satisfied. Thus, this fundamental experiment was carried out to adjust a proper wind speed and to ensure a stabilization of initial SMCs within biofilter for uniform distribution of SMCs and PDs, and for normal plant growth, especially avoiding root stress by wind. Therefore, we designed horizontal biofliter models and manufactured them, and then calculated the ventilation rate, air residence time, and air-liquid ration based on the biofilter depending on three levels of wind speed (1, 2, and $3cm{\cdot}s^{-1}$). The relative humidity (RH) and PD of the humidified air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of lettuce and duffy fern grown within biofilter were measured depending on the three levels of wind speed. As a result of wind speed test, $3{\cdot}sec^{-1}$ was suitable to keep up a proper RH, SMC, and plant growth. Thus, the next experiment was set up to be two levels of initial SMCs (low and high initial SMC, 18.5 and 28.7%) within each biofilter operated and a non-biofiltered control (initial SMC, 29.7%) on the same wind speed ($3cm{\cdot}sec^{-1}$), and measured on the RH and PD of the air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of Humata tyermani grown within biofilter. This result was similar to the first results on RHs, SMCs, and PDs keeping up with constant levels, and three SMCs did not show any significant difference on plant growth parameters. However, two biofiltered SMCs enhanced dry weights of the plants slightly than non-biofiltered SMC. Thus, the stability of this biofiler system keeping up major physical factors (SMC and PD) deserved to be adopted for designing an advanced integrated biofilter model in the near future.

Appearance Rates of Several Substances into Cerebrospinal Fluid of Histamine-treated Rabbits (히스타민 투여시 토끼 뇌척수액으로의 물질 출현율)

  • Kim, Won-Shik;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.21-31
    • /
    • 1968
  • The appearance rates of antipyrine and urea into cerebrospinal fluid from blood were studied in the rabbits which were in the state of hypotension and of high permeability in the capillary beds following injection of histamine. The alteration in the distribution of electrolytes among various compartments of the brain and the permeability characteristics in the blood-cerebrospinal fluid barrier were also observed. Adult male rabbits, weighing around 2 kg, were used. Twenty four rabbits were divided into 3 groups. Besides the control group, histamine treated rabbits were categorized into 2 groups. $H_1$ consisted of the rabbits showing moderate responses to histamine and ranging from 62 to 80 mmHg in their mean anterial blood pressure. The animals which belong to $H_2-group$ showed severe responses to histamine and the mean anterial blood pressures dropped to 30-50 mmHg. Animals were anesthetized with nembutal, 30mg/kg i.v. The mean arterial blood pressure was read by means of the mercury manometer connected to the femoral artery. The animals, treated with histamine, were kept in hypotensive state at least for 40 minutes before the administration of the test-substances. The test-substances, 300 mg of urea and 200 mg of antipyrine, were dissolved in 3 ml of distilled water and were injected into the ear vein of the rabbit. After 10 minutes elapsed arterial blood sample was taken from the femoral artery and cerebrospinal fluid from the cisterna magna. Brain tissues were also analysed with respect to electrolytes in order to observe the disturbances in the electrolytes balance as well as in the function of the central nervous system. The results obtained were as follow: 1. The ratio of antipyrine concentration in cerebrospinal fluid to that of arterial blood plasma, that was the distribution ratio, was close to unity, revealing a well established equilibrium between the compartments of blood and cerebrospinal fluid in 10 minutes. In other words, there was no diffusion barrier with regard to antipyrine. The ratios over unity which were frequently seen in the histamine treated animals were attributable to the early penetration of the substance into the cerebrospinal fluid. 2. The appearance rates of urea into the cerebrospinal fluid in the histamine treated rabbits were higher in comparison with those of in the control animals. The increasing tendency in the rates was particularly remarkable in the $H_2-group$, showing the enhanced penetration of urea across the boondary. 3. In the htisamine treated $H_2-group$ the concentration of potassium in the blood plasma and cerebrospinal fluid well exceeded the control values and showed 8.5 and 9.0 mEq/l in average, respectively. Simultaneous drops in the brain tissue water were noticed, suggesting the leakage of intracellular potassium. 4. There was a coincidence in the rising pattern of potassium in the blood plasma and in the cerebrospinal fluid of $H_2-group$ and at least partial removal of the blood-cerebrospinal fluid barrier with respect to potassium was suggested in these animals. 5. The concentration of sodium in the blood plasma or in the cerebrospinal fluid showed no significant changes following histamine injection. However, sodium in the brain tissue revealed slight elevation in the histamine treated groups. 6. The ratios of the concentrations of potassium to those of sodium, [K]/[Na] in the brain tissues, were 1.92 in the control 1.82 in the $H_1$ and 1.52 in the $H_2-group$, respectively. The marked drop in the $H_2-group$ might represent neural dysfunction in the extremely hypotensive rabbits.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF