• Title/Summary/Keyword: Pressure down

Search Result 792, Processing Time 0.023 seconds

Development of the Event Type Analysis System (ETAS) for the Accident Evaluation in Nuclear Power Plants (원전사고 평가를 위한 원전 사건유형분석 시스템(ETAS) 개발)

  • Choi, Young Hwan;Kim, Young Mi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.35-39
    • /
    • 2009
  • In this study, Event Type Analysis System (ETAS) is developed for the accident evaluation in nuclear power plant. The ETAS system can be used in supporting regulator and/or operator under event situation in nuclear power plants. The ETAS system can categorize the all transient events to 3 categories such as Down-2000, Down-2173, and Slow Fluctuation. We develop the program structure for ETAS system and web-based ETAS system. The ETAS system will be used as sub module of Knowledge-Based Event Evaluation Network (K-EvENT) which is developing for the against the accident in nuclear power plants.

  • PDF

Scramjet Engine Combustor Test with Vitiation Heater Type Supersonic Wind Tunnel (Vitiation heater 형 초음속풍동을 이용한 스크램제트 엔진 연소기의 연소시험)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.586-589
    • /
    • 2009
  • Scramjet engine combustor was tested with "RAMSYS" blow down wind tunnel in Kakuda Space Center, JAXA. As a result, installation of a cavity showed larger combustion pressure than the case without a cavity. Zigzag cavity applied for the first time in this experiment, showed the largest combustion pressure and is expected to contribute to the stable and economic operation of scramjet.

  • PDF

A Study on Stability and Performance Characteristics in Aero - Valved Pulsating Combustion System (공기밸브형 맥동연소 시스템의 안정성 및 성능특성에 관한 연구)

  • 임광렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.11-19
    • /
    • 1993
  • The experimental study was carried out to investigate the stability and the performance characteristics of the aero-valved pulsating combustion system with maximum operating capacity of 60KW. The effect of geometry of combustion system on the stable condition, the flammability limit, the total pressure oscillation amplitude, and the operating frequency can be identified, and the maximum turn-down-ratio is obtained up to 3.3. The total pressure oscillation amplitude can be controlled by tunning the length of the air inlet pipe. The empirical equation with which the operating frequency can be approximated is proposed and the discrepancy is within 5%. The volumetric efficiency is identified to be one of the important parameters determining the upper flammability limit and the maximum value of which is approximately 22%.

  • PDF

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Study on mixing characteristics of T-type micro channel (미소 T 채널의 혼합 특성에 관한 연구)

  • Lee, Sang-Hyun;Ahn, Cheol-O;Seo, In-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2495-2500
    • /
    • 2008
  • We simulated the mixing characteristics in micro T-channel using Lattice Boltzmann Method. We studied the relation a mixing length and pressure-drop due to inlet and outlet ration in Reynolds number 0.5, Peclet number 500 and Schmidt 1000. The ratio of a down-inlet to up-inlet was $0.5{\sim}1.5$ times, up-inlet to outlet was $1{\sim}3$ times and outlet length was 250 times to up-inlet. The mixing length decrease linearly as outlet ratio decreased, and pressure-drip increase non-linearly. Initial stage of micro channel mixture was fast by down-inlet ratio, however, the mixing length is not influence.

  • PDF

Phase Transition Study on Graphite at Room Temperature (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.88-95
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a polycrystalline graphite to investigate the phase transition(s) at room temperature. Energy dispersive X-ray diffraction method was employed using a Mao-Bell type diamond anvil cell with an Wiggler synchrotron Radiation at the National Synchrotron Light Source. Sodium chloride power was used as the internal pressure sensor for the high pressure determinations as well as the pressure medium for quasihydrostatic pressure environment. Graphite transforms into a hexagonal didose not agree with the previously reported observations and this phase persists when pressure is released down to 0.1 MPa. This result dose not agree with the previously reported observations and this discrepancy would be due to the kinetics in phase transition as well as the uniaxially oriented pressure field in the diamond anvil cell.

  • PDF

Cool-down test of cryogenic cooling system for superconducting fault current limiter

  • Hong, Yong-Ju;In, Sehwan;Yeom, Han-Kil;Kim, Heesun;Kim, Hye-Rim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil (고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성)

  • Yoo, Jae-Kyeong;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

  • Jung, Sunyoon;Lee, Mak-Soon;Shin, Yoonjin;Kim, Chong-Tai;Kim, In-Hwan;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-${\alpha}$, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression.

A Study on Consolidation Characteristics at Sand Pile Adjacent Ground by Cavity Expansion Theory (공동확장이론에 의한 Sand Pile 주변지반에서의 압밀특성에 관한 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.231-238
    • /
    • 2000
  • Sand piling method is one of the most widely used methods to improve soft soils. There are several methods to install sand piles, but driven pile method is considered as one of the easiest method. This method simply pushes down the sand piles into soft soils, so that the excess pore pressure would be generated if the soil is saturated. This pore pressure acts as consolidation load. If the amount of sand pile induced pore pressure can be predicted in reasonable ways, the effects of sand piling to improve soft soils would be predicted, and the height of preload can be reduced. In this article, sand pile induced excess pressure was predicted by cavity expansion theory, and the predicted values were compared with the field measured values. The results showed fair agreements between the measured and the predicted excess pore pressure.

  • PDF