• Title/Summary/Keyword: Pressure coolant pump

Search Result 79, Processing Time 0.027 seconds

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.

Reduction in Seismic Response of URANUS Liquid Metal Reactor by Using Three-Dimensional Seismic Isolator (3차원 면진장치를 이용한 URANUS 액체금속로의 지진응답감소)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Ryu, Kang-Mook;Hwang, Il Soon;Yoo, Bong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • URANUS (Ubiquitous, Robust, Accident-forgiving, Non-proliferating, Ultra-lasting and Sustainer) has been developed with 35MWe (100MWth) operating without primary coolant pump, capitalizing on natural circulation capability of lead-bismuth eutectic (LBE) for long-life small and robust power units. To ensure the structural integrity, the large safety margin against Safe Shutdown Earthquake, 0.3g, and furthermore the cost effectiveness for URANUS, three-dimensional seismic base isolation design has been developed. The analytical model has been developed and seismic time history analyses have been carried out. The advantage for using three-dimensional seismic base isolation for URANUS has been discussed.

Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region (초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Flow Characteristics Evaluation in Reactor Coolant System for Full System Decontamination of Kori-1 Nuclear Power Plant (고리1호기 계통제염을 위한 원자로냉각재내 유동 특성 평가)

  • Kim, Hak Soo;Kim, Cho-Rong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.389-396
    • /
    • 2018
  • The Kori-1 Nuclear Power Plant (NPP), WH 2-Loop Pressurized Water Reactor (PWR) operated for approximately 40 years in Korea, was permanently ceased on June 18, 2017. To reduce worker exposure to radiation by reducing the dose rate in the system before starting main decommissioning activities, the permanently ceased Kori-1 NPP will be subjected to full system decontamination. Generally, the range of system decontamination includes Reactor Pressure Vessels (RPV), Pressurizer (PZR), Steam Generators (SG), Chemical & Volume Control System (CVCS), Residual Heat Removal System (RHRS), and Reactor Coolant System (RCS) piping. In order to decontaminate these systems and equipment in an effective manner, it is necessary to evaluate the influence of the flow characteristics in the RCS during the decontamination period. There are various methods of providing circulating flow rate to the system decontamination. In this paper, the flow characteristics in Kori-1 NPP reactor coolant according to RHR pump operation were evaluated. The evaluation results showed that system decontamination using an RHR pump was not effective at decontamination due first to impurities deposited in piping and equipment, and second to the extreme flow unbalance in the RCS caused deposition of impurities.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads (펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석)

  • Lee, Jang Won;Moon, Jong Sung;Kim, Jung Gyu;Sung, Ki Kwang;Kim, Hyun Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • The reactor internals shall be secured in safety and structural integrity under various vibrational loading conditions. Thus, U.S. NRC, Regulatory Guide 1.20 requires the evaluation for the reactor internals due to acoustic induced vibration including the response to the reactor coolant pump pressure pulsation. This paper suggests a methodology to develop an analytical model of the core support barrel accounting for the fluid around the structure and to analyze the responses to the pump pulsation loads using acoustic structure interaction analysis. The analysis results were compared with those of US Palo Verde 1 CVAP and showed a good agreement. Thus, it is expected that the suggested methodology could be an efficient way to evaluate the response of the core support barrel to the pump pulsation loads.

A Study on Thermal Performance of Simulated Chip using a Two Phase Cooling System in a Laptop Computer (휴대용 컴퓨터내의 이상유동 냉각시스템을 이용한 모사칩의 열성능에 관한 연구)

  • Park, Sang-Hee;Choi, Seong-Dae;Joshi, Yogendra
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, a two-phase closed loop cooling system is desinged and tested for a laptop computer using a FC-72. The cooling system is characterized by a parametric study which determines the effects of existence of a boiling enhancement microstructure, initial system pressure, volume fill ratio of coolant and inclination angle of condenser on the thermal performance of the closed loop. Experimental data show the optium condition when the volume ratio of working fluid is 70%, the pump flowing is 6ml/min, and the inclination angle of condenser is $0^{\circ}$. This research shows the maximum values which can dissipate 33W of chip power with a chip temperature maintained at $95^{\circ}C$.