• Title/Summary/Keyword: Pressure boundary

Search Result 1,749, Processing Time 0.03 seconds

Numeric simulation of near-surface moisture migration and stress development in concrete exposed to fire

  • Consolazio, Gary R.;Chung, Jae H.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 2004
  • A methodology is presented for computing stresses in structural concrete members exposed to fire. Coupled heat and moisture migration simulations are used to establish temperature, pore pressure, and liquid-saturation state variables within near-surface zones of heated concrete members. Particular attention is placed on the use of coupled heat and multiphase fluid flow simulations to study phenomena such as moisture-clogging. Once the state variables are determined, a procedure for combining the effects of thermal dilation, mechanical loads, pore pressure, and boundary conditions is proposed and demonstrated. Combined stresses are computed for varying displacement boundary conditions using data obtained from coupled heat and moisture flow simulations. These stresses are then compared to stresses computed from thermal analyses in which moisture effects are omitted. The results demonstrate that moisture migration has a significant influence on the development of thermal stresses.

Study on Static Characteristics of Hybrid Spool Valve (하이브리드 스폴밸브의 정특성 연구)

  • Yun, So-Nam;Ham, Young-Bok;Kim, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, the 4-way spool valve characteristics are clearly defined and proposed new type of spool valve. This paper presents governing equations of the flow through clearances between sleeve and spool as a model of orifice flow for null characteristic analysis, and programmed analysis software of it. This software is possible to basically analysis that not only which case of open center, closed center or critical center but +,- displacement of spool, lab position, boundary region and spool opening of the valve, and to estimate the pressure variation in the spool and external leak flow variation. We are convinced that the scale of load pressure difference is changed as lab condition of spool valve, and this scale is changed with boundary point on the annular clearance. It is vary useful to designer and user of spool valve with this design data and analysis software.

  • PDF

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

Stability analysis of the ball after contacting with the earth in the volleyball game: A multi-physics simulation

  • Yang Sun;Yuhan Lin;Yuehong Ma
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.809-823
    • /
    • 2023
  • In this work, dynamic stability analysis of the ball after contacting with the earth in the volleyball game is presented. Via spherical shell coordinate, the governing equations and general boundary conditions of the ball after contacting with the earth in the volleyball game is studied. Via Comsol multi-physics simulation, some results are presented and a verification between the outcomes is studied. Harmonic differential quadrature method (HDQM) is utilized to solve the dynamic equations with the aid of boundary nodes of the current spherical shell structure. Finally, the results demonstrated that thickness, mass of the ball and internal pressure of the ball alters the frequency response of the structure. One important results of this study is influence of the internal pressure. Higher internal pressure causes lower frequency and hence reduces the stability of the ball.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

The Integrity Verification of Tube-end Sleeve by ECT (와전류탐상검사에 의한 튜브엔드 슬리브 건전성 검증)

  • Kim, Su Jin;Kwon, Kyung Joo;Suk, Dong Hwa;Park, Ki Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Steam generator(S/G) tubes in pressurized water reactor (PWR's) are subject to several types of degradation. This degradation includes denting, pitting, intergranular attack(IGA), intergranular stress corrosion cracking(IGSCC), fatigue, fretting and wear. Degradation can be derived from either the primary side(inside) or the secondary side(outside) of the tube. Recent issue for tube degradation in domestic steam generator is the tube end cracking on seal weld region. The seal weld region at the tube end and tube itself is regarded as a pressure boundary between the primary side and the secondary side. One of the Westinghouse Model-F S/G has experienced tube end cracking and its number of plugging approximately becomes to the operating limit up to 5% due to tube end cracking which was reported as SAI/MAI(single/multiple axial indication) or SCI/MCI(Single/multiple circumferential indication) from the results of eddy current testing. Eddy current mock-up test was carried out to determine the origin of cracking whether it is from weld zone area or parent tube. This result was helpful to analyze crack location on ECT data. Correct action on this problem was the installation of tube-end sleeve. Last year, after removing 340 installed plugs from tubes, selected 269 tubes took tube-end sleeve installation. Tube-end sleeve brought pressure boundary from parent tube to installed sleeve tube. Tube-end sleeve has the benefit of reducing outage period and increasing more revenue than replacing S/G. This paper is provided to assist interest parties in effectively understanding this issue.

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

A Study of the Influence of the Injection Location of Supersonic Sweeping Jet for the Control of Shock-Induced Separation (경사충격파 박리유동 제어를 위한 초음속 진동제트 분출위치의 영향성 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.747-754
    • /
    • 2022
  • An experimental study was carried out to control a shock-induced boundary layer separation by utilizing the supersonic sweeping jet from the fluidic oscillator. High-speed schlieren, surface flow visualization, wall pressure measurement and precise Pitot tube measurement were applied to observe the influences of the location and the supply pressure of the fluidic oscillator on the characteristics of the oblique-shock-induced boundary layer separation. The characteristics of the separation control by the present supersonic fluidic oscillator was quantitatively analyzed by comparing with a conventional control method utilizing an air-jet vortex generator.

Acoustical Performance Analysis of the Simple Expansion Chamber by using CFD (CFD를 이용한 단순확장관의 음향특성 해석)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung;Jeong, Weui-Bong;Kim, Hyung-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1354-1359
    • /
    • 2007
  • This paper discusses the acoustic performance of simple expansion chamber using computational fluid dynamics(CFD). The CFD model consists of an axisymmetric grid with a single period sinusoid of acceptable amplitude and duration imposed at the inlet boundary condition. The time history of the static pressure is recorded at two points, one in the inlet pipe and one point in outlet pipe. The time history of the static pressure is converted to the frequency domain using Fourier Transform and the transmission loss (TL) of the muffler is obtained from the ratio of the static pressure at the inlet and outlet pipe. The transmission loss of CFD result is compared with that of the computational acoustic analysis using the boundary element method (BEM). There are some differences in two results due to the pressure drop according to the inlet and outlet pipe length. Therefore, the effects of the pressure drop to the transmission loss have to be considered.

  • PDF