• 제목/요약/키워드: Pressure Waves

검색결과 800건 처리시간 0.026초

절연체의 내아크성 평가를 위한 안테나 기법의 적용에 관한 연구 (Study on the application of antenna method for the criterion test of insulator arc resistance)

  • 이강원;김명룡;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.57-60
    • /
    • 2004
  • Electrical arc is the final stage of insulation breakdown and has high current density which cause heat and light in insulator. Insulator under electrical arc lost its insulating strength and eternal damages. Conventional criterion of electrical arc resistance in Standards have depended on the change of sound pressure and light color after damages on insulator by electrical arc. The recognition of these changes is done by human himself which was very subjective and resulted in some error to judge whether insulator has damages or not. This paper has shown that antenna method is the appropriate measure to judge electrical arc resistance for insulator. Antenna measures the electromagnetic waves radiated from tungsten electrodes with 6mm gap regulated by KSC2130. Applied voltage cross two tungsten electrodes have two different methods such as 1/8 10 and continuous 10mA. Signal amplitudes obtained by antenna has diminished after the damage of insulator, which will provide objective and good way to judge the electrical arc resistance.

  • PDF

충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용 (Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application)

  • 김기홍;여재익
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.571-579
    • /
    • 2009
  • 에너지 물질과 같이 연소 반응을 하는 압축성 물질을 해석하기 위하여 Hydro-SCCM (Shock Compression of Condensed Matter)이라는 에너지 물질과 비반응 물질을 포함한다중 물질 해석툴을 개발하였다. 고에너지 물질은 강한 충격파와 고온과 고압을 가진 물질경계면에서 높은 변형률을 발생시킨다. 이러한 큰 구배를 가진 현상을 해석하기 위하여 새로운 오일러리안 기법을 사용하였다. 본 논문에서는 현상을 해석하기 위한 수학적 방법과 해석결과를 소개하였다.

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

Experiment on the Feasibility of Cleaning Building Pipelines using Ultrasonic Cavitation

  • Jo, Jae-Hyun;Lee, Ung-Kyun;Kim, Jae-Yeob;Lee, Sungchul;Kim, Kukhyun
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.295-303
    • /
    • 2022
  • Residential heating systems in South Korea are largely based on the use of ondol pipelines. Heat is transferred to the floor by passing hot water through a metal or plastic pipe buried within the concrete of the floor. Consequently, it is difficult to clean the inside of these pipes after installation. Over time, foreign substances such as scale accumulate in the pipe when the ondol heating method is used for an extended period. Therefore, in the past, pipes were cleaned by removing foreign substances attached to the inside surfaces of the pipes using high-pressure water or by disassembling the pipes and removing foreign substances with chemical agents. Recently, a method for removing foreign substances through the cavitation effect of ultrasound has been proposed. This idea might lead to the development of new technologies for cleaning pipe interiors. Consequently, this study investigated the use of ultrasound to clean pipes embedded in concrete. In this study, devices that generated ultrasonic waves with various frequencies and directions were prepared. After preparing arbitrarily contaminated pipes, the appropriate frequency, output strength, and output direction for each foreign substance were determined through repeated experiments. The results of this experiment could provide important information for future methods of cleaning the interior of ondol piping systems.

  • PDF

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath;K.M. Pandey
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.203-222
    • /
    • 2023
  • The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석 (Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain)

  • 이광호;최현석;김창훈;김도삼;조성
    • 한국해안·해양공학회논문집
    • /
    • 제23권2호
    • /
    • pp.171-181
    • /
    • 2011
  • 최근 생산비용을 절감하고 고밀도의 해양에너지발전시스템을 구축하기 위한 다양한 접근이 시도되고 있다. 본 연구에서는 방재와 파랑에너지의 이용이라는 두 목적을 달성하기 위하여 가장 효율적인 에너지의 변환시스템으로 널리 알려져 있는 파력발전장치인 진동수주형(OWC, Oscillating Water Column) 파력발전시스템을 적용한 curtain식 저반사구조물에 대해 단주기파랑의 작용하에서 공기터빈에 직접 작용하는 압축공기의 흐름속도와 구조물에 작용하는 파압에 관한 특성을 3차원수치실험으로부터 검토한다. 해석에서는 기체와 액체의 혼상동적현상을 동일한 지배방정식으로 해석하는 이상류(二相流) 수치모델에 기초한 3차원수치파동수로를 적용하였다. 이로부터 입사파고의 변화와 curtain wall의 침수심에 따른 압축공기의 속도변화 및 작용파압의 특성을 확인하였고, 더불어 반사율이 최소가 되는 주기에서 압축공기의 최대속도가 발생하는 것을 확인하였다.

압력 원형관로내 유사이송특성 연구 (Sediment Transport Characteristics in a Pressure Pipeline)

  • 손광익;김현정
    • 대한토목학회논문집
    • /
    • 제31권3B호
    • /
    • pp.205-209
    • /
    • 2011
  • 배수관로 내의 토사퇴적으로 인한 통수능 저하는 도시홍수의 주요 발생 원인으로 배수관로의 효율적 유지관리는 도시홍수 예방에 대단히 중요하다. 따라서 본 연구에서는 만관 원형관로에서의 토사이송 실험을 실시하고 배수관로 내에서 일어나는 유사이송 형태, 흐름의 저항 및 유사량 등 수리학적 특성을 분석함으로써 관로의 효율적 유지관리를 위한 기초 자료를 제시 하였다. 본 실험은 길이 8 m, 관경 60 mm의 수평 관로와 유사 공급장치로 구성된 모형장치을 통하여 실내실험을 수행하였다. 실험장치는 최대 $30m^3/hr$ 규모의 유량 순환시스템을 갖추고 있으며 관로 상류부에 5 g/s~19 g/s 규모의 유사 공급 장치와 함께 관로 끝부분에 유사 회수시스템을 갖추고 있다. 본 연구 수행 결과 통수단면의 평균유속(U), 점성계수(${\mu}$), 단위 폭당 소류사량($q_b$), 평균입경($d_{50}$), 수중유사단위중량(${\gamma}^{\prime}_s$)를 주요 인자로 하는 두 개의 무차원 변수를 이용하여 압력 원형관로 내 토사이송을 예측하는 공식을 제안하였으며 이들 무차원 변수 간에는 선형 상관관계가 있음을 확인하였다.