• 제목/요약/키워드: Pressure Tank

검색결과 836건 처리시간 0.034초

LNG 저장탱크 보강재의 구조해석 및 최적설계 (Structure Analysis and Design Optimization of Stiffeners in LNG Tanks)

  • 김성주;진교국;하성규;서흥석;윤인수
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.325-330
    • /
    • 2012
  • 본 연구에서는 액화천연가스(LNG 즉 Liquefied Natural Gas) 저장탱크의 보강재(stiffener) 설계를 위한 주요 설계인자들의 특성을 파악하고 구조 최적설계를 수행하였다. 보강재가 결합된 LNG 저장탱크의 내조는 외부의 펄라이트(perlite)의 압력에 의해 좌굴되지 않도록 설계되는데, 기존의 보강재 설계방법에서는 펄라이트 압력이 내조 높이에 무관하게 동일하다고 가정하여, 보강재의 과도한 설계를 초래하였다. 본 연구에서는 펄라이트의 물성값에 따른 펄라이트 압력분포의 영향을 살펴보았고, 최적설계를 통해 기존 설계보다 보강재의 재료비용이 15.3% 절감됨을 알 수 있었다.

추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구 (Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants)

  • 서영덕;김건우;홍범석;김진호;정석호;여재익
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

Type 2 고압용기를 위한 금속선재의 Hoop Wrap에 관한 이론 연구 (Theoretical Study on Hoop Wrap of the Metal Wire for Type 2 High Pressure Tank)

  • 김승환;한진목;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.194-201
    • /
    • 2020
  • Recently, Type 2 high-pressure hydrogen storage tank is studied due to fast defect detection, easy manufacturing, and cost efficiency. Moreover, the dry winding a high-strength metal wire will make increased economic efficiency compare with the wet winding method and the carbon/glass fiber winding method. In this study, a theoretical study on the dry winding of a Type 2 high pressure hydrogen tank using a metal wire was done, and the equations of the total stress on the aligned and the staggered winding for the hoop winding were derived, and the following results were obtained by using these equations. As the diameter of the metal wire, the number of winding layers, and the outer diameter of the liner increase, the maximum stress decreases, but the difference between the maximum stress occurring in the aligned winding and the staggered winding increases. As the pressure increases, the thickness of the winding layer increases, but as the strength of the metal wire increases, the thickness of the winding layer decreases. In addition, regardless of the strength of the metal wire, the thickness of the winding layer of the staggered winding was about 13.4% thinner than that of the aligned winding.

수소충전 시 압력상승률이 표준충전프로토콜 중요변수에 미치는 영향 해석 (An Analysis of the Effect of Pressure Ramp Rate on the Major Parameters of the Standard Hydrogen Fueling Protocol)

  • 채충근;김용규;채승빈
    • 한국가스학회지
    • /
    • 제24권1호
    • /
    • pp.23-32
    • /
    • 2020
  • 수소자동차용기에 높은 압력(70 MPa)의 수소를 빨리 완전 충전하는 것은 쉽지 않다. 그 이유는 줄-톰슨효과 등에 의해 발생하는 열로 인하여 용기내의 온도가 급속히 상승하기 때문이다. 미국의 SAE J2601, 일본의 JPEC-S 0003 같은 충전프로토콜이 제정되어 운영되고 있다. 그러나 이들 프로토콜에는 수많은 가정이 도입되어 내용이 너무 복잡하고 적용범위가 제한적이라는 문제가 있다. 이 연구는 완벽한 실시간 통신에 기반한 새로운 프로토콜을 개발하기 위해서 수행되었다. 이 연구에서는 수소충전 시뮬레이션 프로그램을 이용하여 압력상승률이 자동차용기내의 온도 및 압력 상승과 충전유속에 어떠한 영향을 미치는지 살펴보았다. 그 결과 압력상승률 결정 시 우선 고려하여야 할 매개변수는 자동차 용기의 온도라는 것을 알 수 있었다.

사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사 (Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank)

  • 하민호;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

차량용 연료탱크의 내구도 평가에 관한 연구 (A Study on the Durability Estimation of Vehicle Fuel Tank)

  • 홍민성;조은희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.614-620
    • /
    • 2009
  • A fuel tank of a vehicle is an important part due to its flammable contents ant its importance during crash conditions. Therefore, the fuel tank's design should be assessed for durability and robustness to ensure safety during the early development phase. Previously, evaluation for the durability was done by testing in physical driving conditions which could only be done after the completion of the vehicle. Computation simulation is a more effective method to evaluate the strength and durability of the fuel tank during the early stage. In this paper, two outstanding computational simulation methods are studied. One evaluates PV cycle fatigue due to build up pressure in the fuel tank and the other evaluates the PSD vibration fatigue from modal characteristics. The results show that computational methods agree with physical tests and are thus suitable to analyze the strength and durability of the fuel tank at early development phase.

  • PDF

고압가스 연료탱크의 손상평가를 위한 음향방출 변수의 분석 (Damage Evaluation for High Pressure Fuel Tank by Analysis of AE Parameters)

  • 지현섭;이종오;주노회;이종규;소철호
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.36-40
    • /
    • 2011
  • 본 논문은 자동차용 type II CNG 연료탱크의 손상평가를 위하여 파열시험 중 발생하는 음향방출 변수의 분석에 관한 연구이다. 음향방출 신호의 kaiser effect, felicity effect 및 creep effect의 관찰과 전체 hits에서 진폭 60dB이상의 hits가 차지하는 비율 계산으로 연료탱크의 손상도를 평가할 수 있었으며, 평균 rise time, 평균 진폭 및 평균 initial, reverbration 주파수를 분석함으로써 압력용기의 손상메커니즘을 추정하였다.

수중 폭발 충격을 받는 잠수함 액화 산소 탱크의 구조-유체 연성 해석 (Structure-Fluid Interaction Analysis for the Submarine LOX Tank subjected to Underwater Explosion Impact)

  • 신형철;김규성;김재현;전재황
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.419-424
    • /
    • 2004
  • we performed the underwater explosion analysis for the liquefied oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, we reviewed the theory and application of underwater explosion analysis using Structure-Fluid Interaction technique and its finite element modeling scheme. Next, we modeled the explosive and sea water as fluid elements, the LOX tank as structural elements and the interface between two regions as ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. As the analysis result, the shock pressure due explosion propagated into the water region and hit the structure region. The plastic deformation and the equivalent stress highly appeared at the web frame and the shock mount of LOX structure, but these values were acceptable for design criteria.

  • PDF

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.

챔퍼가 3차원 사각 탱크 내부의 액체 슬로싱에 미치는 영향 (Effect of Chamfering Top Corners on Liquid Sloshing in the Three-dimensional Rectangular Tank)

  • 정재환;이창열;윤현식
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.508-516
    • /
    • 2010
  • This study aims at investigating the effect of the chamfer on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finitevolume method which has been well verified by comparing with the results of the relevant previous researches. The effects of the chamfering top corners of the tank on the liquid sloshing characteristics have been investigated. The angle of the chamfering top corners (${\theta}$) has been changed in the range of $0^{\circ}{\leq}{\theta}{\leq}60^{\circ}$(${\Delta}{\theta}=15^{\circ}$) to observe the free surface behavior, and the effect on wall impact load. Generally, as the angle of the chamfering top corners increases, the impact pressure on the upper knuckle point decreases. However it seemed that a critical angle of the chamfering top corners exists to reveal the lowest impact pressure on the wall.