• 제목/요약/키워드: Pressure Strain

검색결과 1,462건 처리시간 0.029초

점성토의 진동삼축시험시 대변형률영역에서의 주파수 의존성 (Frequency Dependence in Large Strain Range During Cyclic Triaxial Tests of Clay)

  • 김용성
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.63-71
    • /
    • 2006
  • In the present study, the dynamic deformation characteristics of clay, including the effect of loading rate in large strain ranges, were examined by performing undrained cyclic triaxial test. The test results showed that the loading rate to failure decreased with increasing loading amplitude and decreasing loading frequency. While the stress-strain relationships was not affected by loading frequency, excess pore pressure was affected significantly with the change in loading frequency. The change for 0.1 Hz was larger for than that of 0.01 Hz, resulting in inclined effective stress paths. Furthermore, the lower the frequency was, the higher the excess pore pressure was in the first loading.

SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동 (Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading)

  • 이종원;이억섭;황시원;김성현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

지중 연성관의 거동특성 분석 (Analysis of Behavior for Underground Flexible Pipes)

  • 김경열;상현규;이대수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.315-322
    • /
    • 2001
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are calculated using traditional formula and FEM analysis. The results show that theoretical values are more conservative in strain whereas FEM analysis gives larger stress. Considering the strain criteria - 3.5 %, maximum, flexible pipes can be buried at the range of 50cm to 5m in depth without additional soil improvement.

  • PDF

원자로압력용기 노즐부 구속효과를 고려한 파괴인성 평가 (Evaluation of Fracture Toughness considering Constraint Effect of Reactor Pressure Vessel Nozzle)

  • 권형도;이연주;김동학;이도환
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2019
  • Actual stress distributions in the nozzle of a pressure vessel may not be in plane strain condition, implying that the crack-tip constraint condition may be relaxed in the nozzle. In this paper, a methodology for evaluating the fracture toughness of the ASME Code is presented considering the relaxation of the constraint effect in the nozzle of the reactor pressure vessel. The crack-tip constraint effect is quantified by the T-stress. The equation, which represent the relation between the fracture toughness in the lower constraint condition and the plane strain fracture toughness, is derived using the T-stress. This equation is similar to the method for evaluating the fracture toughness of the Master Curve for low constraint conditions. As a result of evaluating the fracture toughness considering the constraint effect in the reactor inlet, outlet and direct injection nozzles using the proposed equation, it was confirmed that the fracture toughness in the nozzles is higher than the plane strain fracture toughness. Applying the proposed evaluation methodology, it is possible to reflect the relaxation of the constraint effect in the nozzles of the reactor pressure vessel, therefore, the safe operation area on the pressure-temperature limit curve can be prevented from being excessively limited.

Lactobacillus casei strain C1 attenuates vascular changes in spontaneously hypertensive rats

  • Yap, Wei Boon;Ahmad, Faisal Malau;Lim, Yi Cheng;Zainalabidin, Satirah
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.621-628
    • /
    • 2016
  • Hypertension can be caused by various factors while the predominant causes include increase in body fluid volume and resistance in the circulatory system that elevate the blood pressure. Consumption of probiotics has been proven to attenuate hypertension; however, the effect is much strain-dependent. In this study, a newly isolated Lactobacillus casei (Lb. casei ) strain C1 was investigated for its antihypertensive properties in spontaneously hypertensive rats (SHR). Lactic acid bacteria (LAB) suspension of 11 log colony-forming unit (CFU) was given to SHR (SHR+LAB, n=8), and phosphate buffer saline (PBS) was given as a control in SHR (SHR, n=8) and in Wistar rats as sham (WIS, n=8). The treatment was given via oral gavage for 8 weeks. The results showed that the weekly systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood pressure (DBP) and aortic reactivity function were remarkably improved after 8 weeks of bacterial administration in SHR+LAB. These effects were mostly attributed by restoration of wall tension and tensile stress following the bacterial treatment. Although not statistically significant, the level of malondialdehye (MDA) in SHR+LAB serum was found declining. Increased levels of glutathione (GSH) and nitric oxide (NO) in SHR+LAB serum suggested that the bacterium exerted vascular protection through antioxidative functions and relatively high NO level that induced vasodilation. Collectively, Lb. casei strain C1 is a promising alternative for hypertension improvement.

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

SHPB인장 시험에서 알루미늄 합금의 진응력-진변형률 관계

  • 양현모;민옥기
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1917-1922
    • /
    • 2000
  • The split Hokinson pressure bar(SHPB) test has been used to find the mechanical property of materials at high strain rate. A tensile split Hopkinson pressure bar test system is developed and the threaded tensile specimen and the split collar are placed between elastic bars. When the compressive elastic wave generated by a striker is transferred from the transmit bar to the incident bar, some elastic wave is reflected at the threaded parts of the specimen and the transmit bar. This reflected wave can interfere with the transmitted wave. A proper length of elastic bars and the location of strain gage in these elastic bars are determined to avoid this interference. In order to avoid the interference of elastic wave reflected at the threaded parts of specimen and elastic bar, the length of transmit bar must be longer than that of incident bar. Strain gage in transmit bar must be located as close as possible from the interface of a transmit bar and specimen. In the developed tensile SHPB test system, A12011-T3 and A17075-T6 are tested to get the true stress-strain relation in the range of strain rate at $10^3/sec$

응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성 (Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path)

  • 정진섭;김찬기;박을축
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

대형 지진하중에 대한 시편의 변형률기반 손상평가 (Strain-based Damage Evaluation of Specimens under Large Seismic Loads)

  • 권형도;허은주;이종민;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.24-31
    • /
    • 2018
  • In this paper, specimen tests with simulated large seismic conditions have been carried out to investigate damage characteristics such as structural deformation and crack initiation under seismic loading. The mechanical behavior of the specimens is predicted by numerical simulations and the strain-based damage evaluations are performed. Finite element analyses of the specimens under the simulated seismic loading at room and operating temperatures were carried out for low alloy steel and stainless steel materials. Peak strain amplitude, cumulative fatigue damage and cumulative strain limit damage are calculated considering the nature of cyclic loading. In all cases, the allowable damage criteria are exceeded at the time of observing cracks visually in the tests. Therefore, it is confirmed that the material behavior due to the large seismic loads can be predicted by the numerical method and the structural damage of the materials can be evaluated conservatively based on the strain criteria.

Rate-dependent shearing response of Toyoura sand addressing influence of initial density and confinement: A visco-plastic constitutive approach

  • Mousumi Mukherjee;Siddharth Pathaka
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.197-208
    • /
    • 2023
  • Rate-dependent mechanical response of sand, subjected to loading of medium to high strain rate range, is of interest for several civilian and military applications. Such rate-dependent response can vary significantly based on the initial density state of the sand, applied confining pressure, considered strain rate range, drainage condition and sand morphology. A numerical study has been carried out employing a recently proposed visco-plastic constitutive model to explore the rate-dependent mechanical behaviour of Toyoura sand under drained triaxial loading condition. The model parameters have been calibrated using the experimental data on Toyoura sand available in published literature. Under strain rates higher than a reference strain rate, the simulation results are found to be in good agreement with the experimentally observed characteristic shearing behaviour of sand, which includes increased shear strength, pronounced post-peak softening and suppressed compression. The rate-dependent response, subjected to intermediate strain rate range, has further been assessed in terms of enhancement of peak shear strength and peak friction angle over varying initial density and confining pressure. The simulation results indicate that the rate-induced strength increase is highest for the dense state and such strength enhancements remain nearly independent of the applied confinement level.