• 제목/요약/키워드: Pressure Sintering Method

검색결과 138건 처리시간 0.021초

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결 (Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering))

  • 김지헌;최상욱;조원승;조동수;오장환
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

펄스전류활성소결법을 이용한 스퍼터링 타겟용 Cu-Mn 소결체 제조 및 특성평가 (Fabrication and Property Evaluation of Cu-Mn Compacts for Sputtering Target Application by a Pulsed Current Activated Sintering Method)

  • 장준호;오익현;임재원;박현국
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are $700^{\circ}C$ and $80^{\circ}C/min$, respectively. The heating directly progresses up to $700^{\circ}C$ with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of $700^{\circ}C$ without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to $700^{\circ}C$.

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조 (Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

$\alpha$-SiC 소결체의 특성에 미치는 소성조건의 영향 (Influence of Sintering Condition on Characteristics of $\alpha$-SiC Ceramics)

  • 정두화;김인술;김효준
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.824-830
    • /
    • 1991
  • $\alpha$-SiC(B; 0.4 wt, C; 3 wt%) was sintered in Ar atmosphere from 205$0^{\circ}C$ to 220$0^{\circ}C$ by means of pressureless sintering and gas pressure sintering in order to find optimum sintering condition of $\alpha$-SiC. Mechanical properties and microstructures of sintered bodies were investigated according to sintering method. The effect of sintering condition on sinterability of $\alpha$-SiC was also examined by using the dilatometer. 97.5% and 98.8% of theoretical density were obtained from pressureless sintering and gas pressure sintering of $\alpha$-SiC powder, respectively. And modulus of rupture was measured as 270~350 MPa and 420 MPa respectively.

  • PDF

액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향 (Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC)

  • 정헌채;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

니켈 실리사이드 화합물의 소결특성 (Sintering Characteristics of Nickel Silicide Alloy)

  • 변창섭;이상호
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

스파크 플라스마 소결공정의 전산모사(2부 : 해석) (Computer aided simulation of spark plasma sintering process (Part 2 : analysis))

  • 금영탁;정상철;전종훈
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 2006
  • 본 2부의 연구에서는 스파크 플라스마 소결의 온도분포, 상대밀도, 입자성장을 해석 하기 위하여 1부 연구의 시뮬레이션 이론을 바탕으로 스파크 플라스마 소결공정을 유한요소법(FEM)과 몬테카를로법(MCM)으로 전산모사하고 실험치와 비교한다. 전산모사를 통하여 소결체의 소결온도가 높을수록 입자성장이 커지고 밀도가 높아져 기계적 성질이 향상되고, 고상 소결에서 몬테카르로 단계가 증가할 수록 기공의 감소와 입자크기의 증대함을 보여 준다.