• 제목/요약/키워드: Pressure Recovery

검색결과 916건 처리시간 0.027초

Flow Control Analysis of S-duct Diffuser Inlet

  • Lian, Xiaochun;Zhang, Lifen;Wu, Dingyi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.157-159
    • /
    • 2008
  • An numerical investigation of the flow characteristics inside a diffusing S-duct inlet with and without vortex generators(VGs) was conducted. The primary discussion herein focuses on development of secondary flow in the S-duct with and without VGs, pressure recovery and distortion at the exit are also discussed. Full three-dimensional Navier-Stokes equations are solved using finite volume method and $k-\varepsilon$ turbulence model is employed. In order to validate the credibility of the numerical methods, predicted results of surface pressure are compared with flight test for the S-duct inlet without VGs, and it shows fairly good agreement. The result shows that VGs alter the flow characteristics in the S-duct and are effective in reducing distortion and ineffective in improving pressure recovery.

  • PDF

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구 (A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow)

  • 김채형;정인석
    • 한국항공우주학회지
    • /
    • 제37권1호
    • /
    • pp.69-75
    • /
    • 2009
  • 본 논문은 새로운 개념의 초음속 혼합기인 벤트 혼합기의 형상적 특성에 따른 공력 특성을 연구하였다. 홀의 크기는 2 mm이며 혼합기 벽면에서 2 mm 떨어진 곳에 위치한 모델(case 1)과 혼합기 벽면 뒤쪽에 위치한 모델(case 2)의 경우 같은 전압력 회복율을 보였으며, 홀의 크기를 반으로 줄인 1 mm(case 3) 모델은 cases 1, 2에 비해 낮은 전압력 회복율을 보였다. 재순환 영역의 크기는 cases 1-3은 같지만 전단층 두께는 cases 1, 2가 case 3 보다 두꺼웠다. 재순환 영역 내 압력 손실의 경우 cases 1, 2은 case 3에 비해 낮은 압력 손실과 높은 속도 구배를 보였으며, 이는 재순환 영역 내 공기와 연료의 혼합을 증대시키는 요인이다. 재순환 영역 내로 유입 되는 유동에 의해 형성되는 박리 버블은 연소기의 전압력 회복율과 재순환 영역 내 압력 분포와 순환 유동에 영향을 미친다. 따라서 박리 버블 형성에 영향을 주는 유입 공기 유량이 벤트 혼합기 성능에 주요한 영향을 미치는 것을 알 수 있다.

소리의 종류와 크기에 따른 일과성 청력 역치 상승과 회복의 차이 (Differences in Temporary Threshold Shift and Recovery Patterns Depending on Sound Type and Pressure)

  • 이채관
    • 한국산업보건학회지
    • /
    • 제30권4호
    • /
    • pp.387-393
    • /
    • 2020
  • Objective: This study aimed to investigate the differences in temporary threshold shift (TTS) and recovery patterns according to different types of sound and volume. Methods: TTS and recovery patterns were assessed for eight students after 30-minute exposure to both 70.0 dB and 90.0 dB of factory noise (noise) as well as music. TTS was measured before exposure and two minutes post exposure, and recovery patterns were evaluated every 10 minutes for one hour. The subjects performed activities of daily life and sleeping times as usual but taking drugs or drinking alcohol were prohibited. The experiment was repeated three times with an interval of at least 16 hours. ANOVA and T-test were carried out using SPSS 19.0 for Windows. Results: The hearing threshold of all subjects before exposure was less than 30 dB at all frequencies. Mean TTSs of 70 dB noise and 90 dB noise exposure were 0.14 and 4.48 dB (p<0.001). Meanwhile, the difference in music was insignificant (-0.63 dB and 0.55 dB, p=0.063). A significance in the difference was also found between the mean TTS of music and noise exposure, more obviously at 90.0 dB (p<0.001) than at 70 dB (p=0.232). The TTS differences were found frequency-wise in terms of sound type. Mean TTS by frequency was higher at 4,000 and 6,000 Hz than at other frequencies, and higher in noise than music at the same sound pressure. The TTS difference in each frequency between both sound types was significant at 90 dB (p<0.001). Subjects mostly recovered from TTS in one hour after exposure, but not with 90 dB-noise exposure. Conclusion: TTS and recovery patterns were different depending on the sound type. When exposed to factory noise, TTS was greater and recovery time was longer compared to music at the same sound pressure. These results suggested that the difference in cognitive processes and psychological factors according to the type of sound causes a change in TTS and recovery.

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권3호
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.

배열회수보일러 기수분리기의 응력해석 및 평가 (Stress Analysis and Evaluation of Steam Separator of Heat Recovery Steam Generator (HRSG))

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.23-31
    • /
    • 2018
  • Stress of a steam separator, equipment of the high-pressure (HP) evaporator for a HRSG, was analyzed and evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the analysis results of the piping system model of the HP evaporator, reaction forces of the riser tubes connected to the steam separator, i.e., nozzle loads, were derived. Next, a finite element model of the steam separator was constructed and analyzed for the design pressure and the nozzle loads. The results show that the maximum stress occurred at the bore of the riser nozzle. The primary membrane stresses at the shell and nozzle were found to be less than the allowable stress. Next, the steam separator was analyzed for the steady-state operating conditions of operating pressure, operating temperature, and nozzle loads. The maximum stress occurred at the bore of the riser nozzle. The primary plus secondary membrane plus bending stress at the shell and nozzle was found to be less than the allowable stress.

화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 - (Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

Study on the distribution law and influencing factors of pressure field distribution before exploitation in heavy oilfield

  • Zhang, Xing;Jiang, Ting T.;Zhang, Jian H.;Li, Bo;Li, Yu B.;Zhang, Chun Y.;Xu, Bing B.;Qi, Peng
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.205-213
    • /
    • 2019
  • A calculation model of reservoir pressure field distribution around multiple production wells in a heavy oil reservoir is established, which can overcome the unreasonable uniform-pressure value calculated by the traditional mathematical model in the multiwell mining areas. A calculating program is developed based on the deduced equations by using Visual Basic computer language. Based on the proposed mathematical model, the effects of drainage rate and formation permeability on the distribution of reservoir pressure are studied. Results show that the reservoir pressure drops most at the wellbore. The farther the distance away from the borehole, the sparser the isobaric lines distribute. Increasing drainage rate results in decreasing reservoir pressure and bottom-hole pressure, especially the latter. The permeability has a significant effect on bottom hole pressure. The study provides a reference basis for studying the dynamic pressure field distribution before thermal recovery technology in heavy oilfield and optimizing construction parameters.

휴게공간에서의 식물 도입이 생산직 근로자의 피로 회복에 미치는 효과 (Impact of Indoor Green in Rest Space on Fatigue Recovery Among Manufacturing Workers)

  • 윤초혜;정이봄;강민지;이주영
    • 한국환경과학회지
    • /
    • 제33권3호
    • /
    • pp.217-226
    • /
    • 2024
  • Manufacturing workers face increased fatigue and stress due to environmental factors in workplace such as noise and vibration. Addressing this issue requires creating conducive rest spaces; however, the existing conditions of rest spaces in manufacturing workplace are subpar and lack sufficient scholarly evidence. This study investigated the effect of nature-based rest spaces on the physical and emotional recovery from fatigue on manufacturing workers. Three manufacturing complexes with nature-friendly rest spaces were selected, and 63 manufacturing workers participated in the study. The measurement tools included the Multidimensional Fatigue Scale (MFS) for fatigue levels, physiological indicators (blood pressure and heart rate), and emotional indicators (Zuckerman Inventory of Personal Reaction Scale; ZIPERS, Perceived Restorativeness Scale; PRS, Profile of Mood States; POMS and State-Trait Anxiety Inventory; STAI). The study compared recovery levels during a 7-minute rest between a space without plants and a space with natural elements. The results indicated a significant reduction in systolic and diastolic blood pressure of participants in green rest spaces compared with those in conventional rest spaces. Regarding fatigue levels, green rest spaces showed a decrease in systolic blood pressure in the middle-fatigue and high-fatigue groups. Positive feelings increased in green spaces, whereas negative emotions decreased, suggesting that short breaks in nature-friendly environments effectively promote workers' physical and emotional recovery. Furthermore, this study emphasizes the importance of green space in various work environments to promote well-being in workers.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.