• Title/Summary/Keyword: Pressure Recovery

Search Result 920, Processing Time 0.027 seconds

Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery (핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석)

  • Maeng, Jae-Hun;Koo, Byeong-Soo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.

Effect of ischemic preconditioning on left ventricular function after cardiac arrest in isoated rat heart (적출 쥐 심장에서 허혈성 전조건화가 심정지후 좌심실 기능에 미치는 영향)

  • 조대윤
    • Journal of Chest Surgery
    • /
    • v.27 no.7
    • /
    • pp.563-570
    • /
    • 1994
  • Effect of ischemic preconditioning on left ventricular function after cardiac arrest in isolated rat heart.Ischemic preconditioning reduces infarct size caused by sustained ischemia. However, the effects of preconditioning on post ischemic cardiac function are not well-known. The objective of the present study was to determine whether preconditioning would improve the recovery of left ventricular functions after cardiac arrest in isolated rat heart model.Isolated rat hearts were allowed to equilibrate for 20 minutes and were then subjected to either 5 minutes of global, normothermic transient ischemia [Group 2 and 4] or not [Group 3]. A stabilization period of perfusion lasting 5 minutes after the termination of transient ischemia was followed by a standard global, normothermic 20 minute-ischemia and 35-minute reperfusion challenge [Group 3 and 4]. These following results were odtained.1. The recovery of left ventricular developed pressures showed no significant differences between Group 3 and Group 4 at 50 [P>0.3] and 85 minute [P>0.2].2. Heart rates showed no significant differences throughout all the course of experiment and between groups [P>0.5].3. The recovery of left ventricular maximum dP/dt showed no significant differences between Group 3 and Group 4 at 50 [P>0.1] and 85 minute [P>0.2].4. The recovery of pressure-rate products showed no significant differences between Group3 and Group 4 at 50 [P>0.5] and 85 minute [P>0.1].These results suggest that ischemic preconditioning does not provide significant benefit for the postischemic left ventricular functions in isolated rat hearts.

  • PDF

An Experimental Study on the Heat Exchanger for the Engine Waste Heat Recovery Using Serrated Fins and Bayonet Tube (톱니형휜이 부착된 2중 열교환관을 이용한 엔진 배열회수기에 관한 실험적 연구)

  • Yang Tae-Jin;Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.685-691
    • /
    • 2005
  • In this study, high performance waste heat recovery heat exchanger was developed using the bayonet tube with spiral serrated fins. Especially, heat exchanger of the bayonet tube type was operated well because of double water passes mechanism and characteristics. A cooling water Passes down inner tubes to thimble-form tubes, then flows back up as it boils. The heat exchanger of bayonet tube type was composed of steel tube with 7channels$(I.D_1\;14mm.\;I.D_2\;31.6mm)$ and spiral serrated fins. The performance tests were conducted under the following conditions A cooling water flow rate was 273kg/h and engine l·pm was varied from 750rpm to 3500 rpm. From the experimental result. waste heat recovery was 9.21kW when engine rpm was 3500. and pressure drop was $15\~260mmHg/m^3$ The effectiveness of heat exchanger was about /$0.7\~0.9$. The performance of heat exchanger was evaluated by using the $\varepsilon-NTU$ method. In the study the NTU of the heat exchanger was $1.57\~2.33$.

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses (온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성)

  • Choi, Byungchul;Lee, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.

Adaptive finite element wind analysis with mesh refinement and recovery

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.111-125
    • /
    • 1998
  • This paper deals with the development of variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined element and efficiently used for the construction of a refined mesh without generating distorted elements. A modified Guassian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of the independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems in which the locations to be refined are changed in accordance with the dynamic distribution of velocity gradient, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

Development of a Performance Prediction Method for Centrifugal Compressor Channel Diffusers

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1144-1153
    • /
    • 2002
  • A hybrid performance prediction method is proposed in the present study. A channel diffuser is divided into four subregions: vaneless space, semi-vaneless space, channel, and channel exit region. One-dimensional compressible core flow and boundary layer calculation of each region with an incidence loss model and empirical correlation of residuary pressure recovery coefficient of a channel predict the performance of diffusers. Three channel diffusers are designed and tested for validating the developed prediction method. The pressure distributions from an impeller exit to the channel diffuser exit are measured and discussed for various operating conditions from choke to nearly surge conditions. The strong non-uniform pressure distribution which is caused by impeller-diffuser interaction is obtained over the vaneless and semi-vaneless spaces. The predicted performance shows good agreement with the measured performance of diffusers at a design condition as well as at off-design conditions.

Influences of Membrane Fouling on Water Permeability of Hollow Fiber Microfiltration Membrane (막오염현상이 중공사정밀여과막의 물투과특성에 미치는 영향)

  • Kim, Boo-Gil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • The effects of membrane fouling on the water permeability were examined using the hollow fiber microfiltration (HMF)membrane. A membrane module with a pore size of 0.1 micron was submerged in the permeation tank and water bath. The applied pressure was 12.4 kPa for direct solid-liquid separation of activated sludge. As the concentration of MLSS(880~2180mg/l) of the feed solution increased, the decreasing rates of the water flux increased and the membrane was clogged more rapidly. The water flux through the membrane did not increase effectively even with the increase in the applied pressure(40.0~93.3kPa). When the membrane was cleaned with water, the recovery rate of water flux were larger for lower applied pressure. The results indicated that the process of direct solid-liquid separation using HMF membrane was effective at lower pressure.

  • PDF

Multi-Point Radial Artery Pulse Wave Transducer using Pneumatic System (공압 방식에 의한 다지점 요골 맥파 검출 장치)

  • 이종진;정민석;황성하;이종현;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.243-248
    • /
    • 2001
  • A radial artery pulse wave is well known as a good mans to diagnose human body condition in th field of Chinese medical science. Information about constitution as well as organs can be obtained by detecting the artery pulse wave. Recently, the information about the human body constitution may be utilized in accelerating the recovery process of the patient on the basis of comprehensive diagnosis. A radial artery pulse wave is considered as one of promising means in examining the human body constitution. Since the examination has been conducted by the feeling of finger, the diagnosis may occasionally have uncertainty or fatal error. In this paper, a new measuring system is suggested and developed to examine the pattern of a pulse wave correctly. The system is composed of four pressure vessels, pressure sensors and air supplying pumps. One of them is utilized for appropriately pressing the radial artery, three of them for detecting pressure change in several mmHg level. The detected data is shown and discussed.

  • PDF

Performance of Flow Rate Control of a Cavitating Venturi (캐비테이션 벤튜리의 유량제어 성능)

  • Cho Won Kook;Moon Yoon Wan;Kim Young-Mog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.146-151
    • /
    • 2002
  • Characteristics of flow rate control has been studied for a cavitating venturi adopted in a liquid rocket propellant feed system. Numerical simulation has been peformed to give about $10\%$ discrepancy of mass flow rate to the experimental data for cavitating flow regime. Mass flow rate is confirmed to be saturated for pressure difference higher than $3\times10^5$pa when the upstream pressure is fixed to $22.8\times10^5$pa and the downstream pressure is varied. The evaporation amount depends substantially to non-condensable gas concentration. However the mass flow rate characteristic is relatively insensitive to the mass fraction of non-condensable gas. So it is reduced by only $2\%$ when the non- condensable gas concentration is increased from 1.5PPM to 150PPM. From the previous comparison the expansions of the non-condensable gas and the evaporation of liquid are verified to have same effect to pressure recovery.

  • PDF