• Title/Summary/Keyword: Pressure Key

Search Result 1,064, Processing Time 0.029 seconds

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements (초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Kim, Jong-Won;Lee, Ju-Kyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

A Study on Using EAV (MERIDIAN) by Analysis of Cerebrovascular Disease Risk Factors (뇌혈관질환 위험요인과의 분석을 통한 EAV(MERIDIAN)활용에 관한 연구)

  • Kim, Young-Eun;Kim, Il-Wha;Moon, A-Ji;Kim, Nam-Kwen;Lee, Seung-Geun;Lee, Key-Sang
    • The Journal of Korean Medicine
    • /
    • v.31 no.5
    • /
    • pp.136-145
    • /
    • 2010
  • Objectives: Electroacupuncture according to Voll (EAV) has been used to quantify the skin's electrical resistance and conductance over acupuncture points that, based on traditional Chinese medicine, represent the state of health or disease of the organ or tissue. However, it doesn't have enough objective data yet, so the purpose of this study was to aid in the use of EAV in analysis of cerebrovascular disease risk factors. Methods: This study researched the clinical statistics of 216 cases: cerebrovascular attack (CVA) group 43, control group 173. We measured control meridian points (CMP) on hands and feet and the cardio ankle vascular index (CAVI) which represents atherosclerosis severity, and sex, age, hypertension, diabetes, dyslipidemia, and obesity. The data were then analyzed by t-test, chi-square test and logistic regression. Results: Between the CVA and control groups, there were not statistically significant differences in CMP. However, logistic regression analysis of the presence of CVA, mean of CMP heart and lung, sex, age, DBP (diastolic blood pressure), and HDL (high density lipoprotein) cholesterol showed that the risk of CVA was 1.1 times increased with CMP heart (p=0.002), in men was 4.12 times higher than in women (p=0.001), 1.09 times higher with age (p=0.000), 1.04 times higher with DBP (p=0.045), while was lower by 0.924 times with CMP lung (p=0.005) and 0.957 times with HDL cholesterol (p=0.006). Conclusion: Although there were not clear evidence or mechanisms about EAV, this study showed that if we study EAV further, we may be able to apply EAV as an objective instrument of oriental medicine in cerebrovascular disease.

Development of a Control Law to Pneumatic Control for an Anti-G Suit (Anti-G 슈트 공압 제어를 위한 제어법칙 개발)

  • Kim, Chong-sup;Hwang, Byung-moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.548-556
    • /
    • 2015
  • The highly maneuverable fighter aircraft such as F-22, F-16 and F-15have the high maneuverability to maximize the combat performance, whereas the high maneuver characteristics might degrade the pilot's mission efficiency due to fatigue's increase by exposing him to the high gravity and, in the worst case, the pilot could face GLOC (Gravity-induced Loss Of Consciousness). The advanced aerospace company has applied the various technologies to improve the pilot's tolerance to the gravity acceleration, in order to prevent the pilot from entering the situation of the loss of consciousness. Especially, the Anti-G Suit(AGS) equipment to protect the pilot against the high gravity in flight could improve the mission success rate by decreasing the pilot's fatigue in the combat maneuver as well as prevent the pilot from facing GLOC. In this paper, a control algorithm is developed and verified to provide an optimal air pressure to AGS according to the gravity increase during the high performance maneuver. This result is expected, as the key technology, to contribute to the KF-X(Korean Fighter eXperimental), project in the near future.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Amorphous Indium-Tin-Zinc-Oxide (ITZO) Thin Film Transistors

  • Jo, Gwang-Min;Lee, Gi-Chang;Seong, Sang-Yun;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.170-170
    • /
    • 2010
  • Thin-film transistors (TFT) have become the key components of electronic and optoelectronic devices. Most conventional thin-film field-effect transistors in display applications use an amorphous or polycrystal Si:H layer as the channel. This silicon layers are opaque in the visible range and severely restrict the amount of light detected by the observer due to its bandgap energy smaller than the visible light. Therefore, Si:H TFT devices reduce the efficiency of light transmittance and brightness. One method to increase the efficiency is to use the transparent oxides for the channel, electrode, and gate insulator. The development of transparent oxides for the components of thin-film field-effect transistors and the room-temperature fabrication with low voltage operations of the devices can offer the flexibility in designing the devices and contribute to the progress of next generation display technologies based on transparent displays and flexible displays. In this thesis, I report on the dc performance of transparent thin-film transistors using amorphous indium tin zinc oxides for an active layer. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium tin zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium tin zinc oxides was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 4.17V and an on/off ration of ${\sim}10^9$ operated as an n-type enhancement mode with saturation mobility with $15.8\;cm^2/Vs$. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium tin zinc oxides for an active layer were reported. The devices were fabricated at room temperature by RF magnetron sputtering. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Establishing the Concept of Buffer for a High-level Radioactive Waste Repository: An Approach (고준위폐기물처분장의 완충재 개념 도출: 접근방안)

  • Lee, Jae Owan;Lee, Minsoo;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The buffer is a key component of the engineered barrier system in a high-level radioactive waste (HLW) repository. The present study reviewed the requirements and functional criteria of the buffer reported in literature, and also based on the results, proposed an approach to establish a buffer concept which is applicable to an HLW repository in Korea. The hydraulic conductivity, radionuclide-retarding capacity (equilibrium distribution coefficient and diffusion coefficient), swelling pressure, thermal conductivity, mechanical properties, organic carbon content, and illitization rate were considered as major technical parameters for the functional criteria of the buffer. Domestic bentonite (Ca-bentonite) and, as an alternative, MX-80 (Na-bentonite) were proposed for the buffer of an HLW repository in Korea. The technical specifications for those proposed bentonites were set to parameter values that conservatively satisfy Korea's functional criteria for the Ca-bentonite and Swedish criteria for the Na-bentonite. The thickness of the buffer was determined by evaluating the means of shear behavior, radionuclide release, and heat conduction, which resulted in the proper buffer thickness of 0.25 to 0.5 m. However, the final thickness of the buffer should be determined by considering coupled thermal-hydraulic-mechanical evaluation and economics and engineering aspects as well.

Comparison of Diagnostic Accuracy for Detecting Coronary Artery Disease of Dipyridamole $^{99m}Tc$-MIBI Myocardial SPECT and It's Defect Map between Men and Women (디피리다몰 부하 $^{99m}Tc$-MIBI 심근 SPECT 극성결손지도를 이용한 관동맥질환 진단의 남녀 비교)

  • Bae, Sang-Kyun;Lee, Dong-Soo;Oh, Byung-Hee;Chung, June-Key;Lee, Myoung-Mook;Park, Young-Bae;Lee, Myung-Chul;Seo, Jung-Don;Lee, Young-Woo;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 1993
  • To evaluate the usefulness and differences in diagnosing coronary artery disease (CAD) between men and women of intravenous dipyridamole $^{99m}Tc$-MIBI myocardial SPECT, we obtained $^{99m}Tc$-MIBI myocardial SPECT and compared with the findings of coronary angiographies. Ninety eight male and 37 female patients who underwent dipyridamole $^{99m}Tc$-MIBI myocardial imaging within one month of cardiac catheterization were studied. Scans were considered abnormal if perfusion defect was detected and the defect size was more than 12% for left anterior descending artery (LAD) and circumflex (LCX) and 8% for right coronary artery (RCA) territories. Lesions${\geqq}$50% luminal diameter narrowing were considered significant CAD. Overall sensitivity for detection of CAD was 94.3% in men and 96.4% in women; specificity was 70% in men and 52.6% in women (P=not significant, ns). Vessel-matched sensitivity was 75.3% in men and 72.7% in women (P=ns): specificity was 84.6% in men and 67.9% in women (P < 0.025). For individual coronary artery, the sensitivity in men and women was 87.7%, 81.8% for LAD; 78%, 83.3% for RCA and 52.2%, 46.7% for LCX (P=ns): the specificity was 80%, 40% for LAD (P<0.01), 82.5%, 68.4% for RCA, 88.9%, 86.4% for LCX (P=ns). The hemodynamic parameter after intravenous dipyridamole in men and women were significantly changed; the heart rate was increased and systolic, diastolic blood pressure was decreased. Adverse effects were reported in 58.8% of men and 72.7% in women (P=ns). The incidence of chest pain and headache were higher in women. There was no significant difference in the incidences of nausea, abdominal pain, dizziness, facial flushing, dyspnea. In conclusion, dipyridamole $^{99m}Tc$-MIBI myocardial SPECT is a safe, noninvasive test for evaluation of CAD. There was no gender difference to detect CAD, but more false-positive rate in women especially in the territory of LAD.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Electrical Properties of ITO and ZnO:Al Thin Films and Brightness Characteristics of PDP Cell with ITO and ZnO:Al Transparent Electrodes (ITO와 ZnO:Al 투명전도막의 전기적 특성 및 PDP 셀의 휘도 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.6-13
    • /
    • 2006
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices, were prepared by using the capacitively coupled DC magnetron sputtering method. ITO and ZnO:Al films with the optimum growth conditions showed each resistivity of $1.67{\times}10^{-3}[{\Omega}-cm],\;2.2{\times}10^{-3}[{\Omega}-cm]$ and transmittance of 89.61[%], 90.88[%] in the wavelength range of the visible spectrum. The two types of 5 inch-PDP cells with ZnO:Al and ITO transparent electrodes were made under the same manufacturing conditions. The PDP cell with ZnO:Al film was optimally operated in the mixing gas rate of Ne(base)-Xe(8[%]), and at gas pressure of 400[Torr]. It also shows the average measured brightness of $836[cd/m^2]$ at voltage range of $200{\sim}300$[V]. Luminous efficiency, one of the key parameter for high brightness and low power consumption, ranges from 1.2 to 1.6[lm/W] with increasing frequency of ac power supplier from 10 to 50[Khz]. The brightness and luminous efficiency are lower than those with ITO electrode by about 10[%]. However, these values are considered to be enough for the normal operation of PDP TV.

Analysis of Key Parameters for Designing the Spent Nuclear Fuel Disposal Container in Korea (사용후핵연료 처분용기 설계를 위한 주요인자 분석)

  • Choi, Jong-Won;Cho, Dong-Keun;Choi, Hui-Ju
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • For the first step to develop a reference disposal container of spent fuel to be used in a deep geological repository, this paper examined safe dimensions of the disposal container on the points of nuclear criticality and radiation safety and mechanical structural safety and provided basic information for dimensioning the container and configuration of the container components, and establishing the favorable and safe disposal conditions. When the safety factor for stress due to the external loads (hydrostatic and swelling pressure) is taken as 2.0, the safe diameter of the filler material to provide enough container strength under the assumed external loads is found to be 112cm with 13cm spacing between inner baskets in PWR container. Also the thickness of the thinner section between the fuel basket and the surface of the cast insert is determined to be 150 mm. Regarding these dimensions of the container, the PWR fuel container is sketched to accommodate 4 square assemblies or 297 CANDU fuel 297 bundles (33 circle tubes x 9 stacks). However the top and bottom parts need to be checked again through the detail radiation shielding analysis with respects to the emplacement position and handling processes of the disposal container.