• Title/Summary/Keyword: Pressure Fluctuations

Search Result 379, Processing Time 0.024 seconds

Flow-induced interior noise from a turbulent boundary layer of a towed body

  • Abshagen, J.;Kuter, D.;Nejedl, V.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.259-269
    • /
    • 2016
  • In this work results from an underwater experiment on flow-induced noise in the interior of a towed body generated from a surrounding turbulent boundary layer are presented. The measurements were performed with a towed body under open sea conditions at towing depths below 100 m and towing speeds ranging from 2.4 m/s to 6.2 m/s (4 kn to 12 kn). Focus is given in the experiments to the relation between (outer) wall pressure fluctuations and the (inner) hydroacoustic near-field on the reverse side of a flat plate. The plate configuration consists of a sandwich structure with an (thick) outer polyurethane layer supported by an inner thin layer from fibre-reinforced plastics. Parameters of the turbulent boundary layer are estimated in order to analyse scaling relations of wall-pressure fluctuations, interior hydroacoustic noise, and the reduction of pressure fluctuations through the plate.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

Characteristics of Minimum Fluidization Velocity and Pressure Fluctuations in Annular Fluidized Beds (Annular 유동층 반응기에서 최소유동화 속도 및 압력요동 특성)

  • Son, Sung-Mo;Kim, Uk-Yeong;Shin, Ik-Sang;Kang, Yong;Choi, Myung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.707-713
    • /
    • 2008
  • Characteristics of minimum fluidization velocity and pressure fluctuations were investigated in an annular fluidized bed whose diameter was 0.102 m and 2.0 m in height. Effects of gas velocity, particle size and bed temperature on the minimum fluidization velocity and pressure fluctuations were examined. The values of minimum fluidization velocity obtained by means of three different methods were very similar each other. The correlation dimension could be a quantitative parameter for expression the resultant complex behavior of gas and solid mixture in the annular fluidized bed. The value of correlation dimension increased with increasing gas velocity, fluidized particle size and temperature in the bed. The minimum fluidization velocity could be determined by means of correlation dimension of pressure fluctuations as well as pressure drop in the bed and standard deviation of pressure fluctuations. The minimum fluidization velocity increased with increasing particle size but decreased with increasing bed temperature in annular fluidized beds. The minimum fluidization velocity was well correlated in therms of correlation dimension as well as operating variables within experimented conditions of this study.

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

The aerodynamic performance of air-shafts with different inner diameters in the railroad tunnel (철도터널 통풍공의 내경변화에 따른 공기역학적 성능)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung;Shin, Min-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.578-584
    • /
    • 2001
  • Purpose of the present study is to investigate the aerodynamic performances of air-shafts with different inner diameters in a single track tunnel for reducing pressure fluctuations and micro pressure waves. Three configurations of air-shafts with different inner diameters were examined for comparison of aerodynamic performances. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length and the train of 4 cars per 1 unit. The results showed the reduction effect of the maximum pressure fluctuations in tunnel and micro-pressure waves radiating towards the surroundings from the tunnel exit according to the increase of the diameter of 10 air-shafts spaced equally.

  • PDF

Note on Nonlinearity of Combustion Instability (연소 불안정 현상의 비선형적 특성 고찰)

  • 서성현
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Combustion instability phenomena have been observed in various different combustion systems. For each specific combustion system, pressure fluctuations measured during high frequency combustion instability presented many different characteristics. High frequency instability occurring in a lean premixed gas turbine combustor mar be dominantly affected by a nonlinear relation between pressure oscillations and heat release rate fluctuations, and gas dynamics plays a crucial role in determining an amplitude of a limit cycle for a liquid rocket thrust chamber. Combustion instability phenomena manifest their inherent nonlinear characteristics. One is a limit cycle and the other bifurcation described by nonlinear time series analysis.

  • PDF

Study on the Lateral Force Fluctuations in a Rocket Nozzle (로켓노즐에서 발생하는 횡력변동에 관한 연구)

  • Nagdewe, Suryakant;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution (CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측)

  • Kim, Younghwa;Nam, Hyunjae;Kim, June Mo;Sun, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.457-464
    • /
    • 2021
  • To analyze the buffet phenomenon that causes serious vibration loads on a satellite launch vehicle, the pressure fluctuations on a hammerhead launch vehicle at transonic speeds are predicted by coupling CFD analysis and semi-empirical methods. From the RANS simulation, shock oscillation region, separation region, and separation reattachment region are identified, and the boundary layer thickness, the displacement thickness, and flow properties at boundary layer edge are calculated. The pressure fluctuations and power spectra on the hammerhead fairing are predicted by coupling RANS results and semi-empirical methods considering spatial distribution, and compared with the experimental data.

Pressure and velocity fluctuations in the atmospheric boundary layer

  • Sterling, M.;Baker, C.J.;Quinn, A.D.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.13-34
    • /
    • 2005
  • This paper presents an analysis of wind velocity and pressure data obtained in a rural environment with a view to identifying the vortex structures present within the flow and examining the relationship between pressure and dynamic pressure. The data is analysed using both conventional analysis and conditional sampling. A method examining the eigenvalues of a matrix formed by the addition of the square of the strain tensor and the square of the vorticity tensor is also investigated. This method illustrates that there are a number of vortex structures present in the flow. The work presented in this paper suggests that the extreme events occur as a result of the superposition of two independent mechanisms.

Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (기액 이상류시의 스크류식 원심펌프의 압력분포)

  • Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF