• Title/Summary/Keyword: Pressure Field Measurement

Search Result 378, Processing Time 0.027 seconds

Express Train Seat Discomfort Evaluation using Body Pressure and Anthropometric Data

  • Park, Se Jin;Min, Seung Nam;Lee, Heeran;Subramaniyam, Murali;Suh, Woo Sung
    • 대한인간공학회지
    • /
    • 제33권3호
    • /
    • pp.215-227
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate Korea's Honam express train's first- and second-class seat discomfort by using pressure measurement, subjective discomfort rating, and physical compatibility. Background: Over the years, the demand for an express train service is continually increasing. A comfortable ride is important to achieving passenger satisfaction. A train seat plays a significant role in fulfilling passenger seating comfort. With this in view, a field survey and pressure measurements were performed on the selected train seat. Method: The pressure ratio at the body-seat interface (thigh and buttock regions) was measured by the pressure mat system. The interface pressure ratio was calculated and compared. The subjective discomfort rating scale was used to evaluate the subjects' overall feeling. The dimensions of train seats were analysed according to the anthropometric and demographic characteristics of the population data from Size Korea. Results: The results highlighted that the interface pressure ratio was greater while participants sat on the second-class seat than the first-class seat in the left- and right-side thigh regions. Also the pressure ratio was greater for the participants in the 1st~25th percentile height groups (149.8~160.8cm). The subjects rated higher discomfort for the second-class seat than the first-class seat. The physical compatibility results showed that the second-class seat's breadth was inadequate for the 95th and 99th percentile male. Conclusion: Overall, interface pressure measurement, subjective discomfort score and physical compatibility results showed that the second-class seat was more uncomfortable for the passengers than the first-class seat. Application: The adopted methodologies could be used to measure the seating comfort of the train seats.

난류 경계층에서 컴플라이언트 코팅과 점탄성 벽면의 방사 소음에 관한 실험적 연구 (Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer)

  • 이승배;이창준;권오섭;전우평
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.779-782
    • /
    • 2002
  • We examine the problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick, open-cell foam with fabric covering and a viscoelastic painted plate of 1mm thick over an acoustic board of 4m thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber ($k_{ch}$) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

  • PDF

난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구 (Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer)

  • 이창준;이승배;권오섭;전우평
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

Development of an automated system for water-hydraulic and leakage test of pressure vessels

  • Kim, Dong-Soo;Lee, Won-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권1호
    • /
    • pp.55-59
    • /
    • 2004
  • This study developed a fully automated test system for pressure vessels, containing such as oxygen, nitrogen, which is widely used in many industries. The pressure vessel test has three major parts including weight measurement test, water-hydraulic test and leakage test followed by cleaning and drying. The control system for these tests consists of three parts: a PLC, a monitoring system and a database management system. The PLC oversees overall control of test machines, while the monitoring system measures and displays weight, pressure, flow etc. for every situations, and the database management system stores test data. These three modules are designed to communicate with one another at 1 Hz frequency alerting problematic situations to the operator. The system has gone through actual field tests for verification of performances.

Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정 (Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing)

  • 신상희;김문기;고영호;김호영;이재동;홍창기;윤영빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

FFT analysis of load data during field operations using a 75-kW agricultural tractor

  • Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Lee, Dae-Hyun;Choi, Chang-Hyun;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제40권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Analysis of load data during field operations is highly important for optimum design of power drive lines for agricultural tractor. Objective of the paper was to analyze field load data using FFT to determine frequency and the energy levels of meaningful cyclic patterns. Rotary tillage, plowing, baling, and wrapping operations were selected as major field operations of agricultural tractor. An agricultural tractor with power measurement system was used. The tractor was equipped with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. In rotary tillage, calculated frequency was decreased as travel speed increased. In baler operation, calculated frequency was increased as PTO speed was increased. The calculated peak frequency levels and expected levels were similar. Results of the study would provide information on power utilization patterns and on better design of power drive lines.

전달 시간차 방식 초음파 가스 유량계 (Development of an Ultrasonic Gas Flow Meter Using Transit Time Difference)

  • 박상국;황원호
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.707-713
    • /
    • 2003
  • We investigate the ultrasonic gas flow meter for the measurement of gas volume quantity, which passing through pipe, using the transit time difference method. We have designed a receiving system of an ultrasonic signal and hardware system of a flow meter Also, we have designed an experimental system for the characteristic test and calibration of a gas flow meter system. We have developed an ultrasonic gas flow meter, which has a measurement uncertainty within $\pm$ 1.7 %. For the test, we have compared our system with a difference pressure type flow meter for a few months in the real field. Through the test, we have confirmed that our system have a good reliability and durability. Also, we have confirmed that our system follows very well the variation of gas volume quantity, which was measured by a difference pressure type flow meter.

Aspects of the use of proper orthogonal decomposition of surface pressure fields

  • Baker, C.J.
    • Wind and Structures
    • /
    • 제3권2호
    • /
    • pp.97-115
    • /
    • 2000
  • The technique of proper orthogonal decomposition is potentially useful in specifying the fluctuating surface pressure field around structures. However there has been a degree of controversy over whether or not the calculated modes have physical meanings. This paper addresses this issue through consideration of the results of full scale experiments, and through an analytical investigation. It is concluded that the lower, most energetic modes are likely to reflect different fluctuating flow mechanisms, although no mode is likely to be associated with just one flow mechanism or vice versa. The higher, less energetic modes are likely to represent interactions between different flow mechanisms, and to be significantly affected by the number of measurement points and measurement errors. The paper concludes with a brief description of the application of POD to the problem of building ventilation, and the calculation of cladding pressures.

지하도 상가와 지하 역사 연계구에서 열차풍 발생 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Train-Wind in Underground Shopping Center Connected to Subway Station)

  • 황인주;이홍철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.82-87
    • /
    • 2005
  • The characteristics of train-wind in the underground shopping center(UGSC) connected to subway station is investigated by field measurement for the case of train movement such as arrival and departure, etc. Also air curtain installed at the pass way between underground shopping center and subway station were considered as the parameter in order to analysis the effect on indoor air quality and thermal condition. The measurement data such as velocity, relative humidity, wind-pressure were plotted as quantity variation with time scale. The train-wind affected wind velocity, air pressure and relative humidity at the connecting area of underground shopping center and subway station, and the variation was about 4.5 m/s, 8%, 40 Pa. Also the result showed that the air curtain is not proper to reduce influence of train-wind

  • PDF

안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적 연구 (Experimental Study on the Helical Flow Field in a Concentric Annulus with Rotating Inner Cylinders)

  • 황영규;김영주
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.822-833
    • /
    • 2000
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow has been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.