• Title/Summary/Keyword: Pressure Distributions

Search Result 1,153, Processing Time 0.024 seconds

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

Neutral Beam Evolution in the KSTAR NBI Test Stand

  • In, S.R.;Shim, H.J.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The pressure distributions in the test stand built for developing KSTAR NBI ion sources were obtained using a network system composed of conductance elements modeling the ion source, the neutralizer, and other beam line components. The allowable regime was defined on the coordinates of the gas supply rate to the ion source and the neutralizer, considering the proper conditions of the three critical parameters, the ion source pressure for good arc discharge, the pressure integral in the neutralizer for sufficient neutralization, and the chamber pressure for minimum neutral beam loss. The neutral beam evolution along the path from the ion source extraction grid to the calorimeter through the neutralizer, the bending magnet and the vacuum chamber was estimated for typical pressure distributions.

  • PDF

An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique (PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Measurement of Hydrodynamic Pressure Distribution between a Piston and Cylinder

  • Kim, Y.H.;Park, T.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.419-420
    • /
    • 2002
  • The piston-cylinder mechanism is widely adopted in the hydraulic machine components. In these cases, the hydrodynamic pressures are generated in the clearance gap between the piston and cylinder under lubrication action of the oils. Under the eccentric condition of the piston in the cylinder bore, the asymmetric pressure distributions in the circumferential direction result in lateral forces on the piston. When the lateral forces act as increasing the piston eccentricity, excessive wear can be occurs in the cylinder bore and piston. In this paper, the hydrodynamic pressures generated in the clearance are measured using a stationary piston and moving cylinder apparatus. The experimental results showed that the hydrodynamic pressure distributions are highly affected by the eccentricity of the piston.

  • PDF

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

An Experimental Study on Oil Pressure Distribution in the Piston-Cylinder Mechanism (피스톤-실린더 기구에서 오일압력 분포에 관한 실험적 연구)

  • Kim, Yeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.77-82
    • /
    • 2011
  • The piston-cylinder mechanism is widely adopted in the hydraulic machine components. In these cases, the hydrodynamic pressures are generated in the clearance gap between the piston and cylinder under lubrication action of the piston. Under the eccentric and tilted condition of the piston in the cylinder bore, the non-symmetric pressure distributions in the circumferential direction result in lateral forces. When the lateral forces act as increasing the eccentricity and tilting ratios, excessive wear can be result in cylinder and piston which are well known 'hydraulic locking' phenomena. In this paper, the hydrodynamic pressures generated in the clearance are measured using a stationary piston and moving cylinder apparatus. The experimental results showed that the hydrodynamic pressure distributions are highly affected by the speed and eccentricity of the cylinder and the oil viscosity.

Study on the Profile of Body Spring in the Flat Type Wiper Blade for an Intended Contact Pressure Distribution (임의의 누름압 분포를 나타내는 플랫형 블레이드 스프링 레일의 곡면 형상)

  • Song, Kyoungjoon;Lee, Hyeongill
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • An analytical procedure to determine a proper profile of the spring rail that generates intended contact pressure distribution in the flat wiper blade is introduced. The flat wiper blade is one piece blade and subjected to pressing force at a center point. In this type of blade, contact pressure distribution in the tip of rubber strip is determined by the pressing force, the initial profile of the blade before contact and bending stiffness of the blade. Experimentally obtained bending stiffness of the blade assembly is almost identical to that of the spring rail. Principle of reciprocity has been used to define the initial profile of spring rail from the deformed profile that is assumed to be identical to the windshield glass profile. The procedure has been verified experimentally by measuring the contact pressure of the blade assembled with the spring rail designed by the procedure proposed here. Measured contact pressure distributions of the blades show good agreements with intended distributions over the entire blade span. Consequently, it can be concluded that proposed procedure has relatively good accuracy in developing the spring rail for flat blade having a specific contact pressure distribution.

Linear and Nonlinear Wave Pressure Distributions Acting on Vertical Caisson of Large Size in 3-Dimensional Wave Fields (3차원파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구)

  • 김도삼;신동훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • Goda formula (Goda, 1973) has been used in the determination of wave pressures acting on a large size caisson such as the pier of the cable stayed bridge at sea. Goda formula, however, is to evaluate the wave pressures acting the infinite vertical caisson of composite breakwater so that it can`t be applied to a large caisson with finite width and length because of diffraction effects. In the present study, three dimensional nonlinear frequence domain method based on perturbation method and boundary integral method is applied to the computation of the linear and nonlinear wave pressures acting on the front of a large size caisson under the variation of its width and length, and angle of incident wave. The numerical results are compared to Goda\`s ones, and then the characteristics of wave pressure distributions acting on a large size caisson are discussed.

  • PDF

Characteristics of Anion Concentration Distributions in Airbone Fine Particles in Urban Atmosphere (도시대기 중에 부유하는 미세입자중 음이온의 농도분포 특성)

  • 천만영;조기철;여현구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Anion concentrations and distributions of airborne fine particles less than 2 $\mu$m in urban atmosphere were determined from Feb. 5 to 16, 1996. The sampling was carried out using 8 stages Hering's low pressure impactor (LPI, aerodynamic cutoff diameters are 0.05, 0.075, 0.11, 0.26, 0.50, 1.0, 2.0, and 4.0$\mu$m) on the top of a five-story building located at Kon-Kuk university in Seoul. Average concentrations if C $l^{[-10]}$ , N $O_3$$^{[-10]}$ and S $O_4$$^{2-}$ were 9.4, 8.4, and 14.5 $\mu\textrm{g}$/㎥, respectively. The distributions of these anion concentrations were bimodal types which showed two peaks in the range of 0.075~0.12 ${\mu}{\textrm}{m}$ and 0.5~1 ${\mu}{\textrm}{m}$ in aerodynamic diameter. These results were 2.5~4.7 times higher than anion concentrations collected by Anderson low volume air sampler.

  • PDF